

Verifysoft Technology GmbH www.verifysoft.com

Integrated!
Testwell CTC++ with Bazel

Testwell CTC++ provides several generic ways to integrate coverage measure-
ment in various build systems. Bazel is a famous challenge for interaction with
third party tools.

Johan Herland and Mark Karpov, working for Tweag, a Modus Create company,
describe their road to establish a stable integration of Testwell CTC++ with Bazel
for a client of Tweag’s Scalable Builds Group.

Testwell CTC++ vs Bazel’s built-in coverage support

Bazel does include some support for code coverage reports, however, it is relatively limited and in-
flexible, only supporting GCOV/LCOV formats. Testwell CTC++, on the other hand, uses its own for-
mat, and overall uses a different approach and workflow to coverage analysis than the GNU tool
suite: Testwell CTC++ runs as a wrapper around your usual C/C++ compiler and linker.

We quickly gave up on trying to integrate Testwell CTC++ into Bazel’s existing coverage functional-
ity for a few reasons. Instead, we focused on how to configure the build to run Testwell CTC++ in
the way it wants be run: as a wrapper around the compiler/linker.

We ended up writing a custom Bazel toolchain generator for Testwell CTC++. This is a Bazel reposi-
tory rule that copies the @local_config_cc toolchain rules but replacing its compiler/linker com-
mands with our own wrapper script.

Our wrapper script is a small shell script that sets up the environment and options required by
Testwell CTC++, and finally ends up forwarding all the compiler/linker arguments from Bazel onto
the ctc command-line.

Bazel’s mantra of “{ Fast, Correct } - Choose two” relies on having complete knowledge of the build
graph. This includes explicitly stating the inputs and outputs of all build steps. With our new tool-

https://www.tweag.io/
https://www.tweag.io/group/scalable-builds/
https://bazel.build/

Integrated! Testwell CTC++ with Bazel 2/3

Verifysoft Technology GmbH www.verifysoft.com

chain that invokes Testwell CTC++, we have in effect added a new output file on to every compila-
tion step (MON.sym), and another output file on to every unit test step (MON.dat). Moreover – unless
we configure Testwell CTC++ otherwise – these files are shared outputs across all compilation/test
steps1, something that we cannot easily encode into Bazel’s build graph at all2.

In the end we have not instrumented Bazel to keep track of the MON.sym/MON.dat files. They are
not known to Bazel at all, and we instead rely on Testwell CTC++ coverage builds and test runs to
always be performed from a clean source tree, with no reuse of build artifacts at all. In our case
this works out well, since Testwell CTC++ coverage builds/runs are ultimately run automatically as
part of the CI infrastructure where we can ensure these conditions are being met.

Navigating the Bazel sandbox

It is worth explaining some complications introduced by the sandbox in which Bazel runs its build
steps. Our project builds on Linux, and we thus use the Linux-sandbox flavor of sandboxing pro-
vided by Bazel. This includes using Linux namespaces to isolate each build step, both from other
build steps, as well as from the surrounding system. This is a powerful mechanism that helps
achieve multiple objectives:

◼ Making sure all build steps are completely specified in Bazel, by cutting off access to any-
thing that is not explicitly declared. This also helps improve the reproducibility of build arti-
facts, and thus the reusability/cacheability of intermediate build products.

◼ Preventing unwanted details from the surrounding system from leaking into the build prod-
uct (e.g., hostnames, timestamps, dependencies on system libraries, etc.)

◼ Preventing the build from polluting the surrounding system (e.g., writing files in places
where they don’t belong)

However, when throwing Testwell CTC++ into the mix, there are certain concessions we have to
make in order to make everything work together:

Keeping MON.sym/MON.dat outside the sandbox

In order for the writes MON.sym/MON.dat to be reflected outside the sandbox, we direct them to a
shared directory outside the sandbox, and additionally pass this directory to Bazel’s
--sandbox_writable_path option in order for these writes to be allowed inside the restricted sand-
box environment.

Preventing corruption of Testwell CTC++ temporary files across sandboxes

While Testwell CTC++ is running, it makes use of some temporary files. These are put in /tmp by
default, and while Testwell CTC++ takes care to use the current process id (PID) when naming

1 Don’t worry, Testwell CTC++ uses flock() to protect against concurrent writes to these files when multiple compila-
tions/tests are running concurrently.
2 If we could declare these extra outputs properly to Bazel, they would surely wreak havoc on any calculations Bazel
does to reuse intermediate build products for faster incremental rebuilds…

Integrated! Testwell CTC++ with Bazel 3/3

Verifysoft Technology GmbH www.verifysoft.com

these files (to prevent concurrent Testwell CTC++ processes from using the same filenames), there
is an unfortunate interplay with Bazel’s sandboxing that causes problems here:

Bazel’s sandbox includes a PID namespace to ensure that processes inside one sandbox cannot
“see” processes in other sandboxes. However, this namespace causes the PIDs inside each sand-
box (as seen from inside the sandbox) to restart their numbering from 1.

When combined with the fact that Bazel by default does not isolate the /tmp directory between
sandboxes, this causes some temporary files to get corrupted by simultaneous writes from differ-
ent Testwell CTC++ process, which then led to corrupted data being copied into the
MON.sym/MON.dat files.

The solution we landed on here was to direct Testwell CTC++ (via the TMP_DIRECTORY configuration
option) to write its temporary files inside the sandbox (instead of in /tmp) which immediately re-
solved the corruption.

Mapping sandbox paths to source tree paths

Another complication introduced by Bazel’s sandbox is that the source file paths that are recorded
inside MON.sym/MON.dat reference the sandbox directories that are created and deleted by Bazel
before/after each build step. We originally believed this alone was enough reason to disable Ba-
zel’s sandboxing altogether (which would have caused other problems, not worth going into here),
but fortunately the ctcreport tool comes with a -map-source-identification option that allows the
sandbox paths to be mapped back into persistent/real source paths.

Thus Testwell CTC++ quite elegantly allows us to build the source code from sandboxes with highly
variable (but predictable) names, while still allowing all source file references to be resolved back
to their canonical location and be successfully found at report generation time.

All scripts used in this setup can be shared by Verifysoft on request.

About Tweag’s Scalable Builds Group

We believe that correct, efficient, and reliable builds are critical for developers to work and collab-
orate effectively. And that the size and complexity of a project should not be bounded by its build
system, but by what is best to achieve the goal of the project.

Whether you have a large codebase or a small one, whether your project is polyglot or monolingual,
and whether you work in an enterprise organization or on an open source project - the build system
you have available should provide correct, efficient, reliable builds.

…find out more at Tweag’s Scalable Builds Group

Services from Verifysoft

Evaluation
free of charge

TÜV certified
Coverage Tool

Qualified
Support

https://www.tweag.io/group/scalable-builds/

	Integrated!
	Testwell CTC++ vs Bazel’s built-in coverage support
	Navigating the Bazel sandbox
	Keeping MON.sym/MON.dat outside the sandbox
	Preventing corruption of Testwell CTC++ temporary files across sandboxes
	Mapping sandbox paths to source tree paths

	About Tweag’s Scalable Builds Group
	Services from Verifysoft

