

Tampere (Finland) / Offenburg (Germany), 1 February 2013

Please be informed that a new
CTC++ version 7. 1 has been released.

This revision 7.1 of CTC++ has the following version numbers in its
components:

 Preprocessor 7.1 (was 7.0.2; seen by -h option)
 Run-time libraries 7.1 (was 7.0.2; seen by 'ident'
 command applied on the library
 in some environments)
 Postprocessor 7.1 (was 7.0.2; seen by -h option
 and in the listings)
 Header file ctc.h 7.1 (was 7.0; seen in the file)
 Configuration file ctc.ini 7.1 (was 7.0.2; seen in the file)
 CTC++ to HTML Converter 3.2 (was 3.1; seen by -h option)
 CTC++ to Excel Converter 2.0 (unchanged; seen by -h option)
 CTC++ Merger utility 2.0 (unchanged; seen by -H option
 and in the merged listings)
 ctc2dat receiver utility 3.1 (was 3.0; seen by -h option)

and the following version numbers in its Windows platform specific
components:

 Visual Studio IDE Integration
 4.1 (was 4.0; seen by clicking the
 Tw-icon in the dialog program and
 selecting "About...")

 CTC++ Wrapper for Windows 3.0 (unchanged; seen by -h option)

and the following version numbers in its Unix platform (Linux, Solaris,
HPUX) specific components:

 CTC++ Wrapper for Unix 1.3 (unchanged; seen by -h option)

This CTC++ v7.1 version contains enhancements and bug fixes:

In the CTC++ preprocessor (ctc):

- New: Various new C++11 standard constructs are now properly handled
 (and instrumented where appropriate)
 -- New keywords: alignas, alignof, char16_t, char32_t, constexpr,
 decltype, noexcept, nullptr, static_assert, thread_local
 (In particular, keywords char16_t, char32_t and decltype are
 recognized in a function parameter list and in a declaration
 in condition.)
 -- Trailing return type of a function, e.g.,
 auto f() -> int { ... }

Testwell CTC++ Version 7. 1 – page 2

 -- The noexcept or noexcept(...) specification in functions, e.g.,
 auto bar() noexcept(f(v.at(0))) -> int { ... }
 -- New kind of member initializers, e.g.,
 S(int x, double y) : m{x}, n{y} {}
 -- Defaulted or deleted functions, e.g.,
 NonCopyable() = default;
 -- The specifiers 'new', 'final' and 'override' in functions, e.g.,
 virtual void f() const final;
 void g(int) override { ... }
 virtual void h(char *) new { ... }
 -- The specifiers 'final' and 'explicit' in classes, e.g.,
 class C final { ... };
 struct D explicit : public B { ... };
 -- Attribute specifiers: [[...]]
 -- Scoped and strongly typed enums (enum class/struct; underlying
 type), e.g.,
 enum class Color : unsigned int { black, white };
 -- Lambdas (lambda functions):
 - lambdas in global scope are instrumented like normal functions;
 in reports they are shown with the name "lambda-[]"
 - lambdas inside normal functions: the outermost lambdas are
 instrumented while inner ones as well as lambdas in return
 statements etc. are not instrumented; shown "lambda-[]()"
 in reports
 -- The 'constexpr' specifier prevents all instrumentation
 (of a declaration or definition that it is applied to)
 -- Templates: the '>>' token is treated as two right angle brackets
 instead of a right shift operator in the following kind of
 cases
 template <typename T = X<int>> class A ...
 (In nested instantiations, e.g., T1<T2<T3>>, '>>' has been
 supported already as of v6.5.2)
 -- Range-based loop statement, e.g.,
 for (auto x : v) { ...
 is instrumented with a counter in the beginning of the loop body
 -- Suffixes (syntactically identifiers) in string and character
 literals, e.g.,
 "1234"ssuffix, '?'csuffix

- Bug fix: Now accepting extension __restrict (by VC++ and GCC) and
 __restrict__ (by GCC) after a function's parameter list, e.g.,
 void C::memb() __restrict { ... }
 (Previously such functions were not instrumented.)

- New: the loop constructs 'while' and 'for' declaration in condition,
 'for each' (by VC++), and 'foreach' (by C#), e.g.
 while (int i = f()) { ... // C++
 for (...;int i = f();...) { ... // C++
 for each (Char c in MyString) { ... // VC++ extension
 foreach (String str in list) { ... // C#
 These are now instrumented in the same way as the C++11 range-based
 loop having one counter in the beginning of the loop body.

Testwell CTC++ Version 7. 1 – page 3

- New: The following kind of template declaration/definition is now
 handled correctly
 template <class T, bool B = 1 < 2> class X ...
 Note the relational operator '<' between the angle brackets!
 (This seems to be accepted by some compilers, not by some others!)

- Change: Single-line comments are now supported in compiler/linker
 response files and in ctc's own response files. If the very first
 character in the response file line is '#', the whole line is treated
 as a comment.

- New: New configuration parameters EXT_JAVA and EXT_CSHARP. These are
 partly "future reservations", except that C#'s foreach loop is
 recognized only if the source file extension is listed in EXT_CSHARP.

- New: Java's operator '>>>' is now correctly recognized.

- Bug fix: If there were, after the keyword class, struct, or union,
 consecutively two or more such specifiers that take arguments in
 parentheses, e.g., __declspec(...) or __attribute__((...)), ctc
 did not recognize the class correctly, and its inline member
 functions were not instrumented. For example,
 struct __declspec(...) __declspec(...) S { ... };
 class __attribute__((...)) __attribute__((...)) C { ... };

- Bug fix: When ctc sees a command like
 ctc possible_ctc_options command options
 i.e. the compile or link 'command' has no file arguments, ctc
 just executes the command with its options. Previously, ctc tried
 to link the CTC++ run-time library into the "target" (unless the
 configured command TYPE was just 'compiler').

- Change: A misplaced #pragma CTC COUNT/APPEND/INIT/QUIT causes only
 a warning. Previously this was a syntax error.

In the CTC++ run-time library:

- New: On Windows platform, added libctc64.a which is a 64-bit
 GCC import library for the CTC++ run-time library, ctcmsnt64.dll
 (MinGW/Cygwin 64-bit code use at Windows).

In the CTC++ postprocessor (ctcpost):

- Bug fix: In statement coverage calculation corrected a bug when at
 the last "}" of a "switch() {}" or "try {}...catch(e) {}" construct
 it was tried to determine if the statements after the last "}" are
 flown-to in execution. Previously a function could get statement
 coverage hits even if the function was not called at all.

- Bug fix: In statement coverage calculation corrected a bug in goto
 statement execution flow analyses. Previously too high TER% could
 be reported under certain conditions.

Testwell CTC++ Version 7. 1 – page 4

- Change: In structural and statement coverage TER%, the 0.5 rounding
 is done in a new way at 0.0-0.5 and at 99.5-100.0. Now 0% is reported,
 when there are no hits whatsoever, and 100% is reported only when
 everything is covered.

In CTC++ to HTML converter (ctc2html):

- Bug fix: Corrected HTML report starting problem in 64-bit Windows.

In Visual Studio IDE integration (Windows version only):

- Enhancement: Improvements in installation
 -- support on VS2010 and VS2012 (no more manual step needed)
 -- CTC++ is set usable on all VS platforms (previously only on Win32)
 -- support on some Visual Studio Express variants
 See details from Vs_integ folder.

In Sym_cw subfolder (Windows version only):

- Removed: CTC++ support for Codewarrior compiler (Symbian EPOC emulator
 use) is dropped off. The whole folder is removed.

General:

- Compatibility: The CTC++ files that have been created with
 CTC++ v7.0.x can be further used with CTC++ v7.1.

- CTC++ User's Guide upgraded to v7.1 level (ctcug.pdf).

Version 7.0.2 (29 February 2012)

For this version, please have a look to
http://www.verifysoft.com/ctcpp70 2 .pdf

Verifysoft Technology GmbH – Technologiepark – In der Spöck 10-12 –-77656 Offenburg (Germany)
Geschäftsführer : Klaus Lambertz - Handelsregister Freiburg HRB 472242

Bank : Sparkasse Offenburg/Ortenau BLZ 664 500 50, Konto : 568 719
IBAN : DE30 6645 0050 0000 5687 19 SWIFT-BIC : SOLADES1OFG

Tel +49 781 127 8118-0 Fax +49 781 6392-029 Email: info@verifysoft.com Internet: http://www.verifysoft.com

http://www.verifysoft.com/ctcpp657.pdf

