erifysoft
TECHNOLOGY

Tampere (Finland) / Offenburg (Germany), 1 February 2013

Please be informed that a new
CTC++ wversion 7.1 has been released.

This revision 7.1 of CTC++ has the following version numbers in its
components:

=

Preprocessor 7.
Run-time libraries 7.

(was 7.0.2; seen by -h option)
(was 7.0.2; seen by 'ident'
command applied on the library
in some environments)
Postprocessor 7.1 (was 7.0.2; seen by -h option
and in the listings)

Y

Header file ctc.h 7.1 (was 7.0; seen in the file)
Configuration file ctc.ini 7.1 (was 7.0.2; seen in the file)
CTC++ to HTML Converter 3.2 (was 3.1; seen by -h option)
CTC++ to Excel Converter 2.0 (unchanged; seen by -h option)
CTC++ Merger utility 2.0 (unchanged; seen by -H option
and in the merged listings)
ctc2dat receiver utility 3.1 (was 3.0; seen by -h option)

and the following version numbers in its Windows platform specific
components:

Visual Studio IDE Integration
4.1 (was 4.0; seen by clicking the
Tw-icon in the dialog program and
selecting "About...")

CTC++ Wrapper for Windows 3.0 (unchanged; seen by -h option)

and the following version numbers in its Unix platform (Linux, Solaris,
HPUX) specific components:

CTC++ Wrapper for Unix 1.3 (unchanged; seen by -h option)

This CTC++ v7.1 version contains enhancements and bug fixes:
In the CTC++ preprocessor (ctc):

- New: Various new C++11 standard constructs are now properly handled
(and instrumented where appropriate)
-- New keywords: alignas, alignof, charl6 t, char32 t, constexpr,
decltype, noexcept, nullptr, static assert, thread local
(In particular, keywords charl6 t, char32 t and decltype are
recognized in a function parameter list and in a declaration
in condition.)
-- Trailing return type of a function, e.g.,
auto f£() -> int { ... }

\éifysoft

TECHNOLOGY

Testwell CTC++ Version 7.1 — page 2

-— The noexcept or noexcept(...) specification in functions, e.g.,
auto bar () noexcept(f(v.at(0))) -> int { ... }

-- New kind of member initializers, e.g.,
S(int x, double y) : m{x}, n{y} {}

-—- Defaulted or deleted functions, e.g.,
NonCopyable () = default;

-— The specifiers 'new', 'final' and 'override' in functions, e.g.,
virtual void f () const final;

void g(int) override { ... }
virtual void h(char *) new { ... }
-— The specifiers 'final' and 'explicit' in classes, e.g.,
class C final { ... };
struct D explicit : public B { ... };

-- Attribute specifiers: [[...]]
-- Scoped and strongly typed enums (enum class/struct; underlying

type), e.g.,

enum class Color : unsigned int { black, white };
-—- Lambdas (lambda functions) :

- lambdas in global scope are instrumented like normal functions;
in reports they are shown with the name "lambda-[]"

- lambdas inside normal functions: the outermost lambdas are
instrumented while inner ones as well as lambdas in return
statements etc. are not instrumented; shown "lambda-[] ()"
in reports

-- The 'constexpr' specifier prevents all instrumentation

(of a declaration or definition that it is applied to)

-- Templates: the '>>' token is treated as two right angle brackets
instead of a right shift operator in the following kind of

cases

template <typename T = X<int>> class A
(In nested instantiations, e.g., T1<T2<T3>>, '>>' has been
supported already as of v6.5.2)
-- Range-based loop statement, e.g.,
for (auto x : v) {
is instrumented with a counter in the beginning of the loop body
-- Suffixes (syntactically identifiers) in string and character
literals, e.g.,
"1234"ssuffix, '?'csuffix

Bug fix: Now accepting extension restrict (by VC++ and GCC) and

__restrict (by GCC) after a function's parameter list, e.g.,
void C::memb () restrict { ... }

(Previously such functions were not instrumented.)

New: the loop constructs 'while' and 'for' declaration in condition,
'for each' (by VC++), and 'foreach' (by C#), e.g.

while (int 1 = £()) { ... // C++

for (...;int 1 = £(0);...) { ... // C++

for each (Char ¢ in MyString) { ... // VC++ extension
foreach (String str in list) { ... // C#

These are now instrumented in the same way as the C++11 range-based
loop having one counter in the beginning of the loop body.

\érifysoft

TECHNOLOGY

Testwell CTC++ Version 7.1 — page 3

- New: The following kind of template declaration/definition is now
handled correctly
template <class T, bool B =1 < 2> class X
Note the relational operator '<' between the angle brackets!
(This seems to be accepted by some compilers, not by some others!)

- Change: Single-line comments are now supported in compiler/linker
response files and in ctc's own response files. If the very first
character in the response file line is '#', the whole line is treated
as a comment.

- New: New configuration parameters EXT JAVA and EXT CSHARP. These are
partly "future reservations", except that C#'s foreach loop is
recognized only if the source file extension is listed in EXT CSHARP.

- New: Java's operator '>>>' is now correctly recognized.

- Bug fix: If there were, after the keyword class, struct, or union,
consecutively two or more such specifiers that take arguments in
parentheses, e.g., _ declspec(...) or attribute ((...)), ctc
did not recognize the class correctly, and its inline member
functions were not instrumented. For example,

struct declspec(...) _ declspec(...) S { ... };
class _ attribute ((...)) _ attribute ((...)) C { ... };

- Bug fix: When ctc sees a command like
ctc possible ctc options command options
i.e. the compile or link 'command' has no file arguments, ctc
just executes the command with its options. Previously, ctc tried
to link the CTC++ run-time library into the "target" (unless the
configured command TYPE was just 'compiler').

- Change: A misplaced #pragma CTC COUNT/APPEND/INIT/QUIT causes only
a warning. Previously this was a syntax error.

In the CTC++ run-time library:

- New: On Windows platform, added libctc64.a which is a 64-bit
GCC import library for the CTC++ run-time library, ctcmsnt64d.dll
(MinGW/Cygwin 64-bit code use at Windows) .

In the CTC++ postprocessor (ctcpost):

- Bug fix: In statement coverage calculation corrected a bug when at
the last "}" of a "switch() {}" or "try {}...catch(e) {}" construct
it was tried to determine if the statements after the last "}" are
flown-to in execution. Previously a function could get statement
coverage hits even if the function was not called at all.

- Bug fix: In statement coverage calculation corrected a bug in goto
statement execution flow analyses. Previously too high TER% could
be reported under certain conditions.

\érifysoft

TECHNOLOGY

Testwell CTC++ Version 7.1 — page 4

- Change: In structural and statement coverage TER%, the 0.5 rounding
is done in a new way at 0.0-0.5 and at 99.5-100.0. Now 0% is reported,
when there are no hits whatsoever, and 100% is reported only when
everything is covered.

In CTC++ to HTML converter (ctc2html):

- Bug fix: Corrected HTML report starting problem in 64-bit Windows.

In Visual Studio IDE integration (Windows version only):

- Enhancement: Improvements in installation
-— support on VS2010 and VS2012 (no more manual step needed)
-—- CTC++ 1is set usable on all VS platforms (previously only on Win32)
-— support on some Visual Studio Express variants
See details from Vs integ folder.

In Sym cw subfolder (Windows version only):
- Removed: CTC++ support for Codewarrior compiler (Symbian EPOC emulator
use) 1is dropped off. The whole folder is removed.

General:

- Compatibility: The CTC++ files that have been created with
CTC++ v7.0.x can be further used with CTC++ v7.1.

- CTC++ User's Guide upgraded to v7.1 level (ctcug.pdf).

Version 7.0.2 (29 February 2012)

For this version, please have a look to
http://www.verifysoft.com/ctcpp702.pdf

Verifysoft Technology GmbH — Technologiepark — In der Spock 10-12 —77656 Offenburg (Germany)
Geschiftsfiihrer : Klaus Lambertz - Handelsregister Freiburg HRB 472242
Bank : Sparkasse Offenburg/Ortenau BLZ 664 500 50, Konto : 568 719
IBAN : DE30 6645 0050 0000 5687 19 SWIFT-BIC : SOLADES10FG
Tel +49 781 127 8118-0 Fax +49 781 6392-029 Email: info@verifysoft.com Internet: http://www.verifysoft.com

http://www.verifysoft.com/ctcpp657.pdf

