

Tampere (Finland) / Offenburg (Germany), 4 July 2008

Please be informed that a new
CTC++ version 6.5.3 has been released.
Primarily a bug fix version. Also some enhancements: optimised
multicondition coverage instrumentation, the CTC++ Preprocessor (ctc)
component is now much faster, Microsoft C++/CLI extension "for each" is now
handled, introduced Eclipse IDE integration on Windows, etc.

This file describes the changes in successive versions of CTC++.
The latest version is described first.

Version 6.5.3 (3 July 2008)

The previous version was v6.5.2. In it only the preprocessor (ctc[.exe])
component was new compared to v6.5. Since v6.5.2 there has been made
available two unofficial/intermediate ctc[.exe] versions v6.5.3b and
v6.5.3b2. The version comparison here is made to the v6.5.2 version.

Generally, this v6.5.3 is a bug-fix version (like v6.5.2), but now also
some other components than ctc[.exe] have been touched.

This revision 6.5.3 of CTC++ has the following version numbers in its
components:

 Preprocessor 6.5.3 (was 6.5.2 seen with the -h option)
 Run-time libraries 6.5.3 (was 6.5, seen by the 'ident'
 command applied on the library
 in some environments)
 Postprocessor 6.5.3 (was 6.5, seen with the -h option
 and in the listings)
 Header file ctc.h 6.5 (unchanged, seen in the ctc.h

 comments)
 Configuration file ctc.ini 6.5 (unchanged, seen in the ctc.ini
 header)
 CTC++ to HTML Converter 2.4 (was 2.3, seen with the -h option)
 CTC++ to Excel Converter 1.1 (unchanged, seen with the -h option)
 CTC++ Merger utility 1.0 (unchanged, seen with the -H option
 and in the merged listings)

Testwell CTC++ Version 6.5.3 – page 2

and the following version numbers in its Windows platform specific
components:

 CTC++ IDE Integration 3.2 (was 3.1, seen by clicking the Tw-icon
 in the dialog program and selecting
 "About...". This integration is used

at
 - Visual Studio .NET 2003/2005/2008

IDEs
 - CodeWarrior IDE [Symbian/emulator]
 - Carbide.c++ IDE [Symbian/emulator])
 - Eclipse IDE

 Visual Studio 5/6 Integration 2.2
 (unchanged, version number seen by
 clicking the TW-icon in the CTC++

dialog boxes and selecting "About
CTCui...")

 CTC++ Wrapper for Windows 2.1 (was 2.0, seen by "ctcwrap -h")

and the following version numbers in its Unix platform (Linux, Solaris,
HPUX) specific components:

 CTC++ Wrapper for Unix 1.2 (unchanged, seen by "ctcwrap -h")

The corrections and enhancements in this version are the following:

In the CTC++ preprocessor (ctc):

- Problem fix: Some compilers (notably Visual C++) allow non-standard
 constructs like ...<::NameFromGlobalScope ...>... (A space should
 separate "<" and "::", as "<:" is a digraph for "[".) Such code may,
 however, occur in some commonly used header files (e.g., the Boost C++
 libraries). Now this is handled by parsing "<::" as two tokens "<"
 and "::". This problem existed since v6.1.

- Bug fix: If there was correctly written "... < :: ...>", it could under
 certain special conditions become "... <:: ...>" in the instrumented
 code, and this does not compile with most compilers. Now fixed. This
 bug existed since v6.5.

- Bug fix: If there was conditional compilation within a template
 instantiation, like the following

 SOME_TEMPLATE<...
 #ifdef AAA
 ...
 #else
 ...
 #endif
 ...>...

Testwell CTC++ Version 6.5.3 – page 3

 the instrumented code became non-compilable (#line directives were
 embedded inside regular code lines). Now fixed. This bug existed
 since v6.5.

- Bug fix: The following kind of use case, a function returning
 pointer to function,

 Rtype (*Fname(parlist1))(parlist2){...}

 was not recognized, and the function remained uninstrumented.
 Now fixed. This bug existed since v6.4.

- Bug fix: If the following kind of construct, "__pragma(arguments)"
 preceded a function definition, it could in certain cases happen that
 the function was not recognized and remained uninstrumented. Now fixed.

- Enhancement: In parallel builds, where the same symbolfile (e.g.,
 MON.sym) is used, access to this file is serialised with a certain
 locking mechanism. An occasional inability to obtain the lock has
 been encountered in an LSF (Load Share Facility)/Linux Farm build
 environment where the symbolfile resided on a network drive. Now the
 algorithm is made more robust, and it seems to fix the problem. This
 problem existed since v6.3.

- Bug fix (Windows only): An UNC file name was not recognized as
 absolute. This could cause problems in these two cases.

 -- If the symbolfile was given as an UNC name, e.g.,

 ctc ... -n \\servername\dirname\filename.sym ... cl ...

 it caused later a run-time error when running the instrumented
 program, because the datafile's name converted to an absolute form
 (from the symbolfile name) was erroneous.

 -- If the instrumented source file was given as an UNC name, e.g.,

 ctc ... cl -c \\servername\dirname\sourcefile.cpp

 and the configuration parameter SOURCE_IDENTIFICATION was set to
 the value "absolute", the absolute name of the source file was
 erroneous in the symbolfile and in the listings.

- Bug fix (Windows only): When reinstrumenting a source file, the file
 name was given with different casing at the latter time, the file was
 considered to have changed even if it necessarily wasn't. This bug
 existed since v6.5.

- Enhancement: Optimised multicondition instrumentation. If the condition
 expression does not contain any && or || operators, its instrumentation
 is "reduced" to decision coverage, and the instrumentation overhead gets
 smaller. Also, the compiler error "operator && is ambiguous" (that could
 previously appear in some exceptional cases with C++) now disappears
 entirely from simple conditions like ...if (object)...

Testwell CTC++ Version 6.5.3 – page 4

- Enhancement (Windows only): for each statements, a Microsoft C++/CLI
 extension in Visual C++ 8.0 (Visual Studio 2005) and later, are now
 allowed. Previously, CTC++ reported a syntax error. The for each
 statements, "for each(...in...){...}", are not instrumented, but they
 are shown in execution profile listings and other reports. So, usage
 of the for each construct does no more prevent from using CTC++
 with the C++/CLI code (the /crl option).

- Enhancement: Speeded up the operation of ctc[.exe].

In the CTC++ run-time library:

- Enhancement: A similar enhancement as was made in the preprocessor
 with its symbolfile locking behavior (see above) is done also to the
 run-time library with its handling of parallel access to the same
 datafile (e.g., MON.dat). However, there have been no reports that
 parallel access would have been any problem here.

In the CTC++ postprocessor (ctcpost):

- Bug fix (Windows only): If there were two or more descriptions of
 the same source file with different timestamps (possibly instrumented
 independently from scratch), but yet representing the same level
 of the source file, ctcpost erroneously rejected the coverage data
 aggregation (summing), even if the only difference was in the casing
 of the source file names. This bug existed since v6.5.

- Enhancement: In connection with multiple symbol (or data) files
 containing descriptions (or coverage data) of the same source files,
 ctcpost displays certain informative notices how the second instance
 (description or coverage data) of the source file is treated. A couple
 of these notices removed in v6.4 have now been restored.

In CTC++ to HTML converter (ctc2html):

- Problem fix (Windows only): The directory parts of the source file
 names are normalised in a certain way (to deal with different casing
 and the optional ".\" notation). Now, there appears only one entry
 per each individual directory in the summary level HTML pages.

- Some other technical and cosmetic fixes.

In the CTC++ Wrapper for Windows (ctcwrap):

- Some changes needed for handling the new CTC++/Eclipse integration.

Testwell CTC++ Version 6.5.3 – page 5

In the IDE integrations on Windows:

- Some enhancements and a bug fix in the Visual Studio .NET 2003/2005/2008
 IDE integrations, read more from %ctchome%\Vs_integ\version.txt.

- Upgraded the CTC++ integration to work with Carbide.c++ v1.3.
 Previously only Carbide.c++ v1.2 was supported. Read more from
 %ctchome%\Sym_cw\version.txt

- Introduced IDE integration to Eclipse. Note that this is not a "plug-in"
 in the Eclipse sense. This is an arrangement, where the current dialog
 programs that are used in Visual Studio .NET 2003/2005/2008, Codewarrior,
 and Carbide.c++ IDE integrations are used also in Eclipse IDE. Read
 more from %ctchome%\Eclipse\readme.txt

Other Windows-specific issues:

- The installation program no more installs the license key (dongle)
 driver. We no more ship dongle-based licenses. Should a dongle driver
 be needed, it needs to be delivered and installed separately.

General:

- Enhancement: In heavy CTC++ use, and when the licensing arrangement
 is a floating license (by FLEXlm), it has sometimes happened that a
 license did not properly return to the pool of free licenses, not even
 when all linger and other timeout limits had expired. The license
 "hangs". Exact reason for this behavior is unknown. Now the license
 check-out/check-in arrangement has been changed so that the behavior
 should give minimally room for the "hung" licenses. Notably, the
 license manager no more needs to watch if the licensed program has
 been disconnected from the net or if it has possibly crashed.

- CTC++ User's Guide upgraded to v6.5.3 level.

Verifysoft Technology GmbH – Technologiepark – In der Spöck 10 – D-77656 Offenburg
Geschäftsführer : Klaus Lambertz - Handelsregister Freiburg HRB 472242

Bank : Sparkasse Offenburg/Ortenau BLZ 664 500 50, Konto : 568 719
IBAN : DE30 6645 0050 0000 5687 19 SWIFT-BIC : SOLADES1OFG

Tel +49 781 6392-027 Fax +49 781 6392-029 Email: info@verifysoft.com Internet: http://www.verifysoft.com

