
Nine Tips for the right Code Coverage Measurement  

By Klaus Lambertz 

 

Measuring code coverage is increasingly important for embedded systems but 

requires some experience. This is because there are a few hurdles to overcome, 

especially with small targets. However, with the right approaches and suitable 

tools, measuring test coverage is possible without excessive effort. Nine 

practical tips help you get started. 

 

Measuring test coverage, also known as code coverage, is becoming increasingly 

important for embedded systems. In many cases, these devices are critical to safety 

or business. Processes are based on IoT devices, patients rely on working pacemakers 

and intelligent insulin pumps, automotive and aviation is no longer conceivable without 

embedded software. This list could be continued almost endlessly. As the criticality of 

the various devices increases, so do the requirements that must be met in terms of 

safety, security, and functionality. Safety standards take this into account and explicitly 

require test coverage to be recorded as part of product verification.  

Especially for beginners, measuring code coverage seems extremely complex and 

time-consuming. However, if you pay attention to a few basic aspects, things quickly 

become easier. 

 

 

1. Set expectations 
Often it is not entirely clear what to expect from code coverage. Coverage 

measurements are not intended to directly improve the code. Their purpose is to 

determine whether the code was fully tested and whether the test cases were 

complete. Thus, the code coverage rather serves the improvement of the testing and 

finally for proving that sufficient tests have been performed. 

 
 
2. Determination of the required test coverage level 
There are numerous different test coverage levels. It can be stated: the more rigorous 

and detailed a test coverage level is, the greater is the required effort and the costs to 

achieve it.  

Unfortunately, only few standards, like DO-178C in aviation, IEC 61508 for the 

functional safety of electrical/electronic, programmable electronic safety-related 

systems, or ISO 26262 for automotive, give specific guidance on the required code 

coverage level.   

Depending on the Safety Integrity Level (SIL) for IEC 61508 or Automotive Safety Level 

(ASIL) for ISO 26262, statement coverage, branch coverage or MC/DC (Modified 

Condition/Decision Coverage) is required (for more information about Code Coverage 

Levels see separate explanation). The following applies to all standards: the more 

dangerous the effects of possible errors, the stricter the required coverage level.   



This can be seen in the following table from the ISO 26262 standard. The highest 

safety level ASIL D requires the highest coverage level MC/DC. In the table ++ stands 

for highly recommended, + stands for recommended. Here we can say that complete 

Modified Condition/Decision Coverage automatically implies complete Branch 

Coverage, and complete Branch Coverage automatically implies complete Statement 

Coverage. 

  

 
Figure 1: ISO 26262 Table 12 - Structural coverage metrics at the software unit level (Source: 

INTERNATIONAL STANDARD ISO 26262-6) 

 

For software for which there are no regulations through standards, it is also important 

to determine in advance which code need to be tested according to which criteria. It 

may be helpful to use the above standards as a guide and to align the scope of testing 

with the criticality of the system. 

 

 

3. Determination of the scope of tests 
Complete code coverage initially means that 100 percent of the specified test level has 

been achieved. However, this is usually only necessary in the safety-critical area. 

Aiming for 100 percent code coverage just to meet this criterion is often not helpful. It 

is important to know why you are running certain test cases. If you don’t know, there is 

high risk of redundant tests that run through already tested codes again and again. 

This higher effort does not pay off, because these additional tests do not provide any 

new insights. By the way, using code coverage analyzers is a good way to avoid such 

redundant tests.   

In non-critical application areas, testing should be neither "too little" nor "complete", but 

"sufficient". 
 

 

4. Determination of supported programming languages 
There are numerous code coverage analyzers: from free tools such as the GNU 

Coverage Testing Tool Gcov, which is part of the GNU Compiler Collection (GCC), to 

comprehensive solutions such as Testwell CTC++ from Verifysoft Technology, which 

offers besides support for all code coverage levels also support for various languages. 

If possible, all languages used in the company should be able to be processed with a 

single coverage tool. This way, developers and testers can work in a uniform interface 

and do not have to familiarize themselves with different tools. For embedded software 

development, the tool should cover at least C, C++, and Java.  

 

https://www.verifysoft.com/en_ctcpp.html


5. Save memory space 
When measuring code coverage on small targets the limited memory space is often a 

hurdle.  The reason is the need of instrumentation of the code: in order to measure the 

coverage, the code coverage tool inserts counters into the code. In addition, a library 

must be implemented on the target to be tested, which, among other things, handles 

data transfer to a host. 

The counters are usually stored as global arrays in the data memory. Especially with 

very tightly dimensioned targets this can lead to problems. The remedy is a code 

coverage analyzer specialized for embedded devices. Such tools instrument as 

sparingly as possible. In the case that the instrumentation overhead is still to high, the 

code coverage can be analyzed separately for individual code parts.  

A third method is to reduce the size of the counters. Usually, the size of the counters 

are 32 bits. Special arrangements reduce the counter size to 16 or 8 bits. However, 

care must be taken to avoid overflows. The bit-cov-measure of Testwell CTC++ is such 

a special arrangement for small embedded targets and microprocessors.  

 

 
6. Check possible effects on the processor 
To save costs, not only the memory of many embedded devices is small, but also the 

processor has often limitations. However, instrumentation also affects the processor. 

Therefore, it can happen that the defined timing is exceeded, which can lead to faulty 

program runs under certain circumstances.  

Unfortunately, it cannot be reliably predicted in advance whether problems will occur 

due to the slightly higher processor load. Possible effects will only become apparent in 

the respective project. For this reason, code coverage analyzers should also be 

selected with regard to their impact on timing. If necessary, the use of smaller counters 

(as mentioned above) or partial instrumentation can remedy the situation. 

It is also possible to run the tests once with coverage analysis and once without it to 

determine whether the coverage analysis has led to changes of the program behavior. 
 

 

7. Check the possibility of integration into your toolchain  
More and more tests are being automated. This makes sense, because manual 

interventions always represent a potential source of errors and also cause significant 

costs. The automation of the test on the build system is required especially in agile 

development with Continuous Integration/Continuous Deployment (CI/CD). However, 

this requires that the code coverage analyzer used can be integrated into the tool chain 

and the build system. In addition, the coverage tool should also be independent of the 

compiler used. 

Especially in large development projects, automated tests and the automatic capture 

of code coverage can hardly be dispensed with. Therefore, it is important that code 

coverage tools can be easily and smoothly integrated into toolchains. On the other 

hand, sophisticated dashboards and frontends are rather negligible for automated 

testing. 



8. Verification of the comprehensibility of reports 
Code coverage generates large amounts of data. Each area of testing - unit tests, 

module tests, functional tests, etc. - provides its own data on code coverage. To obtain 

a complete picture, this information should be aggregated. It is up to the Code 

Coverage Analyzer to prepare this information in a meaningful and interpretable way.  

In addition, this data is important in the context of certifications or audits that may be 

required.  

It is important that the information provided by the coverage tool is available in both 

machine-readable form for further automatic processing (e.g. XML), as well as in 

human readable form (e.g. HTML) for a quick and good overview. 

 

 
Figure 2: The HTML-report (function summary) of the code coverage analyzer Testwell CTC++ shows 

at one glance which functions are covered by tests. Entirely covered functions are shown in blue. For 

functions shown in red color, coverage is less than 100%. For example the function “lights()” has 75% 

multicondition coverage and 83% statement coverage (TER stands for “test effectiveness ratio”).  

 

 
Figure 3: The Execution Profile of Testwell CTC++ shows detailed information of the covered items 

within the source code 



9. Check for suitability of the code coverage tool for the development 
of safety-critical software 
For the development of safety-critical software, it is self-evident that the code coverage 

tool must support the coverage levels required by the respective standard.  

Furthermore, standards require the qualification of the entire toolchain. The availability 

of a tool qualification kit for the code coverage analyzer simplifies this work 

considerably. In this context, it is also important whether the tool provider offers 

appropriate advice here. 

 
 
Conclusion 
Measuring code coverage is not trivial, but it is not too complex either. Thus, there is 

hardly any good reason to renounce code coverage - even in the non-critical area. Test 

coverage helps on several levels: tests and test procedures can be optimized, resulting 

in significant cost and time benefits. Furthermore, code coverage ensures that the 

products have been adequately tested and that they reach the customers in a certain 

minimum quality.  

Embedded systems providers should not repeat a serious mistake made by the IT 

industry: deliver “banana software” that matures at customer’s site. Users of embedded 

devices will not accept this - especially not when it comes “critical” products like 

medical devices or ECUs in the automotive sector. 
 

 

 

 
Further Explanations about Code Coverage Levels 

Function Coverage 

Function Coverage measures whether all functions of the program were called. The 
Function Coverage is the “weakest” of the usual test coverage levels. As it ignores the 
inner working of the software, its usefulness is quite low. 

Statement Coverage 

Statement coverage determines which statements were executed by tests. This can 
be used, for example, to detect dead code. It also shows whether tests are available 
for all statements.  

Decision Coverage / Branch Coverage 

At this coverage level, each decision must be tested at least once as true and once as 
false. For normal if statements, this corresponds to branch coverage, where each 
branch must have been executed. 

 



Condition Coverage 

Condition coverage considers compound decisions in detail. For decisions that consist 
of multiple atomic conditions composed via Boolean operators, each of these 
conditions must be tested individually as “true” and as “false”. 

 

Multicondition Coverage and Modified Condition/Decision Coverage (MC/DC) 

For multicondition coverage, all possible true-false combinations must be checked for 
composite decisions. In the case of multiple conditions within a decision, this requires 
a mostly impracticably high number of test cases. Therefore, in practice and in 
standards, Modified Condition/Decision Coverage (MC/DC) is relevant, where the 
number of test cases is reduced, and the informative value of the test coverage 
remains sufficiently high. For MC/DC all atomic conditions of a composite condition are 
used. For each of the atomic conditions a test case pair is tested, which leads to the 
change of the overall result of the composite condition, but only the truth value of the 
considered atomic condition changes, whereas the truth value of the other atomic 
conditions must remain constant.  

 
 
 
About the Author 
 

  

 

 

 

 

 

 

 

 

© 2022 Verifysoft Technology GmbH 

Klaus Lambertz is Chief Executive Officer of 

Verifysoft Technology GmbH www.verifysoft.com in 

Offenburg/Germany. Before he founded the 

company in 2003, had sales and management 

positions with different software testing solution 

providers. Klaus graduated in studies of 

Economics, Marketing and Foreign Trade in 

Cologne (Germany) and Paris (France). 

 

http://www.verifysoft.com/

