
Medical Device Regulation

First Aid for Old Code

In addition to the international standard IEC 62304 – medical device software –

software life cycle processes, a new Medical Device Regulation (MDR) valid

since May 2021 came into force in the European Union. It is not the first time that

quality assurance for medical device software has come into focus. IEC 62304,

MDR and other standards stipulate that manufacturer must ensure quality

assurance throughout the entire life cycle of a product. In the case of current

systems, this is generally hardly problematic. The situation is quite different

when new functions are to be added to older devices: who in the company still

knows the code or where to find the - hopefully existing - documentation?

Although the IEC 62304 and MDR only affect the medical sector, the issue is

nonetheless known in other industries as well.

Here, tools such as Imagix 4D, which analyze the structure of a program and

thus support the developers, can help.

by Klaus Lambertz, Managing Director of Verifysoft Technology GmbH

The digital transformation has also gained massive momentum in medical technology.

Almost every new device has software, wireless connections and the ability to read

data from sensors. This creates important new opportunities in therapy and

diagnostics, but also new risks. Scenarios in which hackers attack medical devices no

longer belong in the category of science fiction but are becoming real. It is therefore

essential to minimize risks for patients and operating personnel by ensuring the best

possible quality of the equipment. This is the aim of the numerous standards that are

relevant in medical technology. With the Medical Device Regulation EU 2017/745

(MDR), the requirements of quality assurance are becoming even more central.

IEC 62304, MDR or ISO 14971 demand in unison, but usually without concrete

assistance, that a manufacturer must implement quality assurance and risk

management processes. In the case of embedded systems and stand-alone software,

two areas must be distinguished in the context of quality assurance. First, during

development, the goal is to avoid code errors (verification) and to ensure the required

functionality (validation). On the other hand, systems must be considered throughout

their life cycle. Products that are essentially based on software can be subject to

significant changes over the course of their lifetime, for example due to updates or new

functions being added. Changes are also done when a library used during

development is replaced by a newer version. The relevant standards and regulations

take both aspects into account. For example, the MDR makes clear: "For products

whose components include software, or for products in the form of software, the

software shall be developed and manufactured in accordance with the state of the art,

taking into account the principles of software life cycle, risk management, including

information security, verification and validation."

Problems come with age

New products are unproblematic with regard to quality assurance throughout the

lifecycle if appropriate processes have been anchored in the company. Especially with

today's agile development methods such as Continuous Integration/Continuous

Deployment, documentation plays a major role. The principle of "clean code", i.e. code

that is clean and free of all superfluous convolutions, has also become an important

component of many development departments. One element of this is refactoring,

which is intended to improve the code. Code is not perfect from the beginning, all parts

must be subjected to permanent reviews. The task of refactoring is to bring the code

into a form that is desirable for the developers, i.e. easily comprehensible. Refactoring

has two main goals: To make the extensibility of the code as easy as possible and at

the same time to ensure maintainability. In addition, it should be achieved that the code

can be reused in whole or in parts in later projects. Unlike debugging, however,

refactoring does not affect the behavior of the program. The code is not functionally

changed. Strictly speaking, errors or security problems found during refactoring are not

eliminated, but only marked for cleanup.

If refactoring is done as an integrative measure in the ongoing development process,

the effort is manageable. However, this is not the case with older systems: The longer

an application is in operational use without optimization of the code, the more difficult

this code becomes to understand. This is because over the lifecycle of an application,

changes and adaptations must be made again and again, which influence the behavior

of the software. The effort required for maintenance and modernization increases

rapidly as knowledge of the architecture and functionalities dwindles.

The extreme case is legacy code: legacy code is challenging in terms of maintenance

or enhancement. Most of the time, the code is extremely confusing. Often the most

basic documentation is missing. And the developers responsible at the time are retired

or scattered to the four winds. Nevertheless, the software has to be extended with new,

up-to-date functionalities. Often, errors have to be eliminated that remained

undiscovered until now. For the developers entrusted with this task, a detective search

for traces in the old structure then begins, which also demands archaeological

qualities.

Fig.1: Function call diagrams show the sequence Fig.2: The UML class diagram expresses proper-
of called functions and further information. ties of classes and relationships between them in

 UML notation.

Refactoring of legacy code requires preparation

In order to prepare old code in such a way that a planned refactoring can be carried

out with reasonable effort, the following aspects of the software should first be

examined:

• Files: In the C context, files are either headers or compilable files, i.e. the

physical components of the software. Here it is important to know what

relations these have to each other - for example, what common headers they

have.

• Subsystems: Which subsystems are there and in which relations do they stand

to each other? What architecture underlies the subsystems?

• Data types: Types are usually pointers, enums, classes, structs and the like.

Here, the relationships between types and variables are of particular interest.

• Functions: The call hierarchy of functions within a project is elementary

important to understand the code. Both incoming and outgoing calls should be

considered. The control flow between functions is also relevant, i.e. at which

point a jump is made to another function. In turn, branches and loops in the

program must be known since these influence the control-flow.

These analyses cannot be performed manually above a certain project complexity.

Simply identifying the relationships between the various files in a project is an error-

prone task. The use of suitable tools is inevitable to carry out analyses that can be

automated as far as possible. A proven tool for the analysis of source code in C/C++

and Java is Imagix 4D, a tool developed by Imagix Corp. USA and distributed in Europe

by Verifysoft Technology.

Fig. 3: The calculation tree of a variant shows Fig. 4: With the review function, Imagix 4D
which values and other variables contribute to supports otherwise purely manual processes as
a variable and which other variables are affected a central semi-automated tool

Graphical preparation of the structure

Imagix 4D analyzes the source code of a software and graphically prepares the

information relevant for refactoring. This provides the developers with a representation

of the entire project, showing all relations in the required level of detail. Depending on

the question, the tool has different display modes. To provide an overview of the

dependencies of all subsystems present in a project, the information is prepared in the

form of a design structure matrix. This allows, for example, the granularity of the

subsystems to be broken down from the root directory to the level of individual

functions. For a better understanding of the subsystem architecture, this can in turn be

displayed as a diagram. In the case of unclear architectures, for example with a large

number of files directly in the root directory, filters help to find the right focus. Numerous

other views, for example for displaying function dependencies or control flows, provide

developers with further detailed information. Another important feature is the search

for anomalies in the code to specifically increase the quality of the application. These

include recursions, deadlocks, unused variables or inappropriate type conversions.

With this knowledge, it is possible to understand the existing code and trace its

functionality. In the next step, the code can then be cleaned up and brought into a

coherent form as part of refactoring. In addition, the use of Imagix 4D makes it possible

to create comprehensive documentation with reasonable effort - indispensable for any

certification that may be required. On this basis, the application can then be provided

with new functions. In addition, the basis is prepared to continue operating the old

project with current approaches of agile development.

Conclusion

Lifecycle quality assurance is not new in medical technology, but it is gaining weight

due to recent technological developments and the MDR. To ensure quality even for

long-lived products or products widely used in the field, the code must first be known -

a real problem in many cases. Refactoring has established itself as an integral part of

agile development methods for a reason. Legacy applications also benefit from it -

especially if they have not yet reached the end of their lifecycle. For this, however, the

existing source code must be analyzed in detail, as refactoring should in no way

change the behavior of the software. Trial-and-error approaches are out of place here.

Without suitable tools, the analysis of complex applications is hardly possible, and

errors cannot be excluded with economically justifiable effort. A graphical presentation

of the architectures and the underlying structures gives developers a good

understanding of how an application is structured and where the right entry points for

refactoring are. This means that even old systems can be brought up to a level where

the quality and risk management requirements can be met. Everyone benefits from

this: greater safety for patients and a longer product life for manufacturers.

Further information can be found at

https://www.verifysoft.com/en_imagix4d.html

https://www.verifysoft.com/en_imagix4d.html

