
c©2019, VERIFYSOFT TECHNOLOGY GMBH 1

How Imagix 4D supports the understanding of software based
on source code

J.D. Baltzer, M.Sc.
baltzer@verifysoft.com

Verifysoft Technology GmbH
In der Spöck 10-12

DE-77656 Offenburg

Abstract—This work will show how Imagix 4D improves the process
of exploring and understanding unfamiliar source code. An introduction
into why and where such a process is required will be followed by a
description of the methods Imagix 4D introduces to support such source
code analysis.

I. INTRODUCTION

The size and complexity of software projects typically increase
over their lifetime. As a result, it becomes more and more expensive
to sustain enough knowledge to support maintenance, enhancements
and verification against existing and changed requirements. This is
exacerbated by the realities of personnel turnover and use of 3rd
party and legacy code. Shortages of resources lead to shortcuts in
quality like violations of guidelines and poor documentation. This
overall decline is termed „Technical Debt“ and „Software Decay“.
At some point, the effort to continue such a project becomes too
high; the remaining options for it are rebuilding or termination.
But how to decide if that point has been reached? It’s difficult to
appraise a project that has degenerated over decades. Especially if
the documentation is useless, and if the people who were involved
are no longer available. The only way to get detailed and up to date
information about such a software project is to explore its source
code. This is very hard to be done manually. For this reason, a tool
is needed to allow insights on every level of abstraction of a software
based on source code.

II. IMAGIX 4D

Developed and sold by the Imagix Corporation, Imagix 4D is a tool
whose purpose is software inspection based on source code [Ima18].
Imagix 4D creates graphical and tabular representations of projects
written in C, C++ and Java. The granularity of the views range
from an architectural perspective down to individual symbols. Imagix
4D also integrates visualizations of relationships and metrics into its
diagrams. Which software properties are shown can be configured
for any specific purpose. Imagix 4D has several basic, predefined
diagrams that will be introduced in the following sections. The Git
2.17.1 project [Git19] configured for Ubuntu 18.04.2 LTS [Can18] is
used as the example here.

DSMs (Design Structure Matrices) deliver an overview of
all contained dependencies between subsystems of the system.
This is shown in a matrix, hence its name. Rows and columns
represent subsystems. The granularity of the subsystems start with
the root directory „git-2.17.1“ and can be broken down to the
level of individual functions. The fields of the cross sections show
dependencies, or relationships, from the symbols listed in the column
on the left to the symbols listed in the row along the top. The entries
can be binary values or a numeric count of relationships. Figure 1
contains an excerpt of the DSM of the example project. From the

Figure 1. Excerpt of the DSM of the example project.

detail can be determined that along with 8 sub-directories, there are
a number of C files directly under root directory that comprises the
main part of the project. Because of spatial restrictions, Figure 1
contains only an excerpt of the whole DSM. Relationships are shown
as binary values. The principal diagonal emphasizes relationships
from a subsystem to itself. This might be function calls within an
individual file, for example. Several selection methods are available
in the DSM. They enable focus on interesting sections in the matrix,
such as relationships from file „commit.c“ to file „usage.c“. When an
interesting cross section is found, its relationships can be expanded
in a new subsystem architecture.

Subsystem Architectures enable focus on the architecture of a
project. This could be either the physical distribution of files in a
directory tree or the logical hierarchy of packages and classes. For
the example project, because it is written in C, only the physical
variant is available. In the project, the root directory is used for
main development. As a result, it is full of files, which makes the
diagram big and messy if no filters are applied to it. Filters are very
useful for focusing on significant parts of software, avoiding a big
and clumsy diagram that can occur when all available properties
are enabled. For an example, the relationship from „commit.c“ to
„usage.c“, referred to in the last section, is shown in Figure 2.
Here, the functions involved in this relationship can be observed.
To get more information about the symbol usage underlying other
relationships, the diagram can be appropriately modified.



2 c©2019, VERIFYSOFT TECHNOLOGY GMBH

Figure 2. Excerpt of the architecture of the example project.

Figure 3. Function calls from „commit.c“ to „usage.c“ as UML diagram.

Figure 4. Structures contained in „commit.c“ and „usage.c“ as UML diagram.

UML Diagrams aid in understanding complex container symbols
such as classes, structs and files, including their relationships. Imagix
4D offers 3 configurable UML diagrams. The diagram for classes
and structs shows their members and relations in UML notation.
File diagrams show properties of compilation units. Both variants
address the question: „How are the logical units in my projects are
assembled and how do they work together? “. The diagrams can
show members of the class symbols with their data encapsulation
and storage class. Relationships between the members can be
superimposed. For the class symbols themselves, relationships like
composition and inheritance are visible. The example in Figure 3
shows a UML file diagram for the files „commit.c“ and „usage.c“.
Functions from „commit.c“ call 3 functions from „usage.c“. All of
the functions expect the static function „read_graft_file“ are global.
To inspect the structs defined in that files, the view can be changed
to a UML class diagram. This will show the 4 structs of Figure 4.
As can be seen „commit_buffer“ is part of „buffer_slab“ and the
other structs are independent.

File Diagrams show the dependencies between files. If the
C language is used, these are headers and compilation units.
Relationships in this diagrams are inclusions or arbitrary accesses
between symbols contained in the files. A look at the include
hierarchy of the files „usage.c“ and „commit.c“ in Figure 5 clearly

Figure 5. Direct inclusions of „commit.c“ and „usage.c“.

Figure 6. Files with functions called by functions from „usage.c“ and their
common calls.

indicates what header files they include in common. Figure 6 shows
only files having functions called by any function in „usage.c“.
There are a lot of recurring relationships among the files indicating
a tight coupling between them.

Data Type Diagrams are very valuable for understanding complex
data types, which can be very frustrating and time-consuming
otherwise. Imagix 4D provides the option to visualize relationships
between types and variables. Types themselves are categorized
into pointer, enums, classes, structs, typedefs and templates. These
categories can also be distinguished optically in the diagram, based on



HOW IMAGIX 4D SUPPORTS THE UNDERSTANDING OF SOFTWARE BASED ON SOURCE CODE 3

Figure 7. Relations of the struct „commit_extra_header“.

Figure 8. Incoming and outgoing calls of the function
„read_commit_extra_header_lines“.

Figure 9. The control flow between „read_commit_extra_headers“ and
„read_commit_extra_header_lines“.

different colors and shapes. From the example project, the return type
of the function „read_commit_extra_header_lines“ in file „commit.c“
is shown in Figure 7. The type „struct commit_extra_header“ consists
of 4 variables of scalar and pointer types. One of the variables is
a reference to the same type. This indicates that this type is some
kind of unidirectional list.

Function Call Diagrams provide insight into the calling hierarchy
of a project. Calls to and from functions are shown. It is also
possible to include function pointers. For example, Figure 8 shows
all direct calls to and from „read_commit_extra_header_lines“.
It is only called by „read_commit_extra_headers“, leading to the
conclusion that „read_commit_extra_header_lines“ is just a helper
function to read lines.

Control Flow Graphs focus on the control flow between functions,
showing calls to functions along with the sequence and conditions
of such calls. Knowledge about the control flow is critical to
understand a program. For this reason, control flow constructs
are also shown in this more interprocedural focused diagram.
Viewing the functions „read_commit_extra_header_lines“ and
„read_commit_extra_headers“ in a control flow graph provides
further indication that „read_commit_extra_header_lines“ is a helper
function from „read_commit_extra_headers“. It is only called once
in the main control flow, as shown in Figure 9. On the left side,
there is the line of source code calling the helper function. Other
control elements are hidden because they are not related to calls of
the current state of the diagram.

Flowcharts allow inspection of the control flow of a single function
at a time. Imagix 4D implements 4 variants of flow charts, along with
the possibility of extending and/or reducing additional information.
This serves different requirements, from a rough understanding of

Figure 10. The flowchart of the function „read_commit_extra_header_lines“.

the control flow down to examination of implementation details and
comments. Figure 10 gives an generalized view of the control flow
of „read_commit_extra_header_lines“ including embedded function
calls. What can be seen is that there is a main loop that processes
an array.

Source Code Inspections can be fundamentally improved by Imagix
4D. Beyond mainly manual browsing, Imagix 4D offers methods to
automatically detect anomalies in source code. This allows concen-
tration on small, potentially problematic areas of code, and can save
a lot of temporal effort. In addition, the generated reports can serve
as a basis for further investigation of a project. The generated reports
deliver metrics for various programming elements, information about
anomalies in control and data flow, and information about potential
redundancies.

III. RETROSPECTION

This work demonstrated through an real example how Imagix 4D
supports exploring and understanding of unfamiliar source code. The
main focus was on the graphical representations available, from an
architectural down to individual symbol point of view. This proved
that Imagix 4D is an appropriate tool for the problem defined in the
introduction.

REFERENCES

[Can18] CANONICAL: Ubuntu 18.04.2 LTS (Bionic Beaver). http://releases.
ubuntu.com/18.04/. Version: 2018

[Git19] GIT COMMUNITY: GitHub - git/git: Git Source Code Mirror - This
is a publish-only repository and all pull requests are ignored. Please
follow Documentation/SubmittingPatches procedure for any of your
improvements. https://github.com/git/git. Version: 2019

[Ima18] IMAGIX CORP.: Reverse Engineering Tools - C, C++, Java - Imagix.
https://www.imagix.com/index.html. Version: 2018

http://releases.ubuntu.com/18.04/
http://releases.ubuntu.com/18.04/
https://github.com/git/git
https://www.imagix.com/index.html

	I Introduction
	II Imagix 4D
	III Retrospection
	References

