/*
       *  linux/kernel/time.c
       *
       *  Copyright (C) 1991, 1992  Linus Torvalds
       *
       *  This file contains the interface functions for the various
       *  time related system calls: time, stime, gettimeofday, settimeofday,
       *			       adjtime
       */
      /*
       * Modification history kernel/time.c
       * 
       * 1993-09-02    Philip Gladstone
       *      Created file with time related functions from sched.c and adjtimex() 
       * 1993-10-08    Torsten Duwe
       *      adjtime interface update and CMOS clock write code
       * 1995-08-13    Torsten Duwe
       *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
       * 1999-01-16    Ulrich Windl
       *	Introduced error checking for many cases in adjtimex().
       *	Updated NTP code according to technical memorandum Jan '96
       *	"A Kernel Model for Precision Timekeeping" by Dave Mills
       *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
       *	(Even though the technical memorandum forbids it)
       */
      
      #include <linux/mm.h>
      #include <linux/timex.h>
      #include <linux/smp_lock.h>
      
      #include <asm/uaccess.h>
      
      /* 
       * The timezone where the local system is located.  Used as a default by some
       * programs who obtain this value by using gettimeofday.
       */
      struct timezone sys_tz;
      
      static void do_normal_gettime(struct timeval * tm)
      {
              *tm=xtime;
      }
      
      void (*do_get_fast_time)(struct timeval *) = do_normal_gettime;
      
      /*
       * Generic way to access 'xtime' (the current time of day).
       * This can be changed if the platform provides a more accurate (and fast!) 
       * version.
       */
      
      void get_fast_time(struct timeval * t)
      {
      	do_get_fast_time(t);
      }
      
      /* The xtime_lock is not only serializing the xtime read/writes but it's also
         serializing all accesses to the global NTP variables now. */
      extern rwlock_t xtime_lock;
      
      #if !defined(__alpha__) && !defined(__ia64__)
      
      /*
       * sys_time() can be implemented in user-level using
       * sys_gettimeofday().  Is this for backwards compatibility?  If so,
       * why not move it into the appropriate arch directory (for those
       * architectures that need it).
       *
       * XXX This function is NOT 64-bit clean!
       */
      asmlinkage long sys_time(int * tloc)
      {
      	int i;
      
      	/* SMP: This is fairly trivial. We grab CURRENT_TIME and 
      	   stuff it to user space. No side effects */
      	i = CURRENT_TIME;
      	if (tloc) {
      		if (put_user(i,tloc))
      			i = -EFAULT;
      	}
      	return i;
      }
      
      /*
  86   * sys_stime() can be implemented in user-level using
       * sys_settimeofday().  Is this for backwards compatibility?  If so,
       * why not move it into the appropriate arch directory (for those
       * architectures that need it).
       */
       
      asmlinkage long sys_stime(int * tptr)
      {
      	int value;
      
      	if (!capable(CAP_SYS_TIME))
      		return -EPERM;
      	if (get_user(value, tptr))
      		return -EFAULT;
      	write_lock_irq(&xtime_lock);
      	xtime.tv_sec = value;
      	xtime.tv_usec = 0;
      	time_adjust = 0;	/* stop active adjtime() */
      	time_status |= STA_UNSYNC;
      	time_maxerror = NTP_PHASE_LIMIT;
      	time_esterror = NTP_PHASE_LIMIT;
      	write_unlock_irq(&xtime_lock);
      	return 0;
      }
      
      #endif
 112  
      asmlinkage long sys_gettimeofday(struct timeval *tv, struct timezone *tz)
      {
      	if (tv) {
      		struct timeval ktv;
      		do_gettimeofday(&ktv);
      		if (copy_to_user(tv, &ktv, sizeof(ktv)))
      			return -EFAULT;
      	}
      	if (tz) {
      		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
      			return -EFAULT;
      	}
      	return 0;
      }
      
      /*
       * Adjust the time obtained from the CMOS to be UTC time instead of
       * local time.
       * 
       * This is ugly, but preferable to the alternatives.  Otherwise we
       * would either need to write a program to do it in /etc/rc (and risk
       * confusion if the program gets run more than once; it would also be 
       * hard to make the program warp the clock precisely n hours)  or
       * compile in the timezone information into the kernel.  Bad, bad....
       *
       *              				- TYT, 1992-01-01
       *
       * The best thing to do is to keep the CMOS clock in universal time (UTC)
       * as real UNIX machines always do it. This avoids all headaches about
       * daylight saving times and warping kernel clocks.
       */
      inline static void warp_clock(void)
      {
      	write_lock_irq(&xtime_lock);
      	xtime.tv_sec += sys_tz.tz_minuteswest * 60;
      	write_unlock_irq(&xtime_lock);
      }
      
      /*
       * In case for some reason the CMOS clock has not already been running
       * in UTC, but in some local time: The first time we set the timezone,
       * we will warp the clock so that it is ticking UTC time instead of
       * local time. Presumably, if someone is setting the timezone then we
       * are running in an environment where the programs understand about
       * timezones. This should be done at boot time in the /etc/rc script,
       * as soon as possible, so that the clock can be set right. Otherwise,
       * various programs will get confused when the clock gets warped.
       */
      
      int do_sys_settimeofday(struct timeval *tv, struct timezone *tz)
      {
      	static int firsttime = 1;
      
      	if (!capable(CAP_SYS_TIME))
      		return -EPERM;
      		
      	if (tz) {
      		/* SMP safe, global irq locking makes it work. */
      		sys_tz = *tz;
      		if (firsttime) {
      			firsttime = 0;
      			if (!tv)
      				warp_clock();
      		}
      	}
      	if (tv)
      	{
      		/* SMP safe, again the code in arch/foo/time.c should
      		 * globally block out interrupts when it runs.
      		 */
      		do_settimeofday(tv);
      	}
      	return 0;
      }
      
      asmlinkage long sys_settimeofday(struct timeval *tv, struct timezone *tz)
      {
      	struct timeval	new_tv;
      	struct timezone new_tz;
      
      	if (tv) {
      		if (copy_from_user(&new_tv, tv, sizeof(*tv)))
      			return -EFAULT;
      	}
      	if (tz) {
      		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
      			return -EFAULT;
      	}
      
      	return do_sys_settimeofday(tv ? &new_tv : NULL, tz ? &new_tz : NULL);
      }
      
      long pps_offset;		/* pps time offset (us) */
      long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
      
      long pps_freq;			/* frequency offset (scaled ppm) */
      long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
      
      long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
      
      int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
      
      long pps_jitcnt;		/* jitter limit exceeded */
      long pps_calcnt;		/* calibration intervals */
      long pps_errcnt;		/* calibration errors */
      long pps_stbcnt;		/* stability limit exceeded */
      
      /* hook for a loadable hardpps kernel module */
      void (*hardpps_ptr)(struct timeval *);
      
      /* adjtimex mainly allows reading (and writing, if superuser) of
       * kernel time-keeping variables. used by xntpd.
       */
      int do_adjtimex(struct timex *txc)
      {
              long ltemp, mtemp, save_adjust;
      	int result;
      
      	/* In order to modify anything, you gotta be super-user! */
      	if (txc->modes && !capable(CAP_SYS_TIME))
      		return -EPERM;
      		
      	/* Now we validate the data before disabling interrupts */
      
      	if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET))
      	  /* adjustment Offset limited to +- .512 seconds */
      		if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE )
      			return -EINVAL;	
      
      	/* if the quartz is off by more than 10% something is VERY wrong ! */
      	if (txc->modes & ADJ_TICK)
      		if (txc->tick < 900000/HZ || txc->tick > 1100000/HZ)
      			return -EINVAL;
      
      	write_lock_irq(&xtime_lock);
      	result = time_state;	/* mostly `TIME_OK' */
      
      	/* Save for later - semantics of adjtime is to return old value */
      	save_adjust = time_adjust;
      
      #if 0	/* STA_CLOCKERR is never set yet */
      	time_status &= ~STA_CLOCKERR;		/* reset STA_CLOCKERR */
      #endif
      	/* If there are input parameters, then process them */
 257  	if (txc->modes)
      	{
      	    if (txc->modes & ADJ_STATUS)	/* only set allowed bits */
      		time_status =  (txc->status & ~STA_RONLY) |
      			      (time_status & STA_RONLY);
 262  
      	    if (txc->modes & ADJ_FREQUENCY) {	/* p. 22 */
      		if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) {
      		    result = -EINVAL;
 266  		    goto leave;
      		}
      		time_freq = txc->freq - pps_freq;
      	    }
      
 271  	    if (txc->modes & ADJ_MAXERROR) {
      		if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) {
 273  		    result = -EINVAL;
      		    goto leave;
      		}
      		time_maxerror = txc->maxerror;
      	    }
      
      	    if (txc->modes & ADJ_ESTERROR) {
      		if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) {
      		    result = -EINVAL;
 282  		    goto leave;
      		}
 284  		time_esterror = txc->esterror;
      	    }
      
      	    if (txc->modes & ADJ_TIMECONST) {	/* p. 24 */
      		if (txc->constant < 0) {	/* NTP v4 uses values > 6 */
      		    result = -EINVAL;
      		    goto leave;
      		}
      		time_constant = txc->constant;
      	    }
 294  
      	    if (txc->modes & ADJ_OFFSET) {	/* values checked earlier */
      		if (txc->modes == ADJ_OFFSET_SINGLESHOT) {
      		    /* adjtime() is independent from ntp_adjtime() */
      		    time_adjust = txc->offset;
      		}
      		else if ( time_status & (STA_PLL | STA_PPSTIME) ) {
      		    ltemp = (time_status & (STA_PPSTIME | STA_PPSSIGNAL)) ==
      		            (STA_PPSTIME | STA_PPSSIGNAL) ?
      		            pps_offset : txc->offset;
 304  
      		    /*
      		     * Scale the phase adjustment and
      		     * clamp to the operating range.
      		     */
      		    if (ltemp > MAXPHASE)
      		        time_offset = MAXPHASE << SHIFT_UPDATE;
      		    else if (ltemp < -MAXPHASE)
      			time_offset = -(MAXPHASE << SHIFT_UPDATE);
      		    else
      		        time_offset = ltemp << SHIFT_UPDATE;
      
      		    /*
 317  		     * Select whether the frequency is to be controlled
      		     * and in which mode (PLL or FLL). Clamp to the operating
      		     * range. Ugly multiply/divide should be replaced someday.
      		     */
      
      		    if (time_status & STA_FREQHOLD || time_reftime == 0)
      		        time_reftime = xtime.tv_sec;
      		    mtemp = xtime.tv_sec - time_reftime;
      		    time_reftime = xtime.tv_sec;
      		    if (time_status & STA_FLL) {
      		        if (mtemp >= MINSEC) {
      			    ltemp = (time_offset / mtemp) << (SHIFT_USEC -
      							      SHIFT_UPDATE);
      			    if (ltemp < 0)
      			        time_freq -= -ltemp >> SHIFT_KH;
 332  			    else
      			        time_freq += ltemp >> SHIFT_KH;
      			} else /* calibration interval too short (p. 12) */
      				result = TIME_ERROR;
      		    } else {	/* PLL mode */
      		        if (mtemp < MAXSEC) {
      			    ltemp *= mtemp;
      			    if (ltemp < 0)
      			        time_freq -= -ltemp >> (time_constant +
      							time_constant +
      							SHIFT_KF - SHIFT_USEC);
 343  			    else
      			        time_freq += ltemp >> (time_constant +
      						       time_constant +
      						       SHIFT_KF - SHIFT_USEC);
 347  			} else /* calibration interval too long (p. 12) */
 348  				result = TIME_ERROR;
      		    }
      		    if (time_freq > time_tolerance)
      		        time_freq = time_tolerance;
      		    else if (time_freq < -time_tolerance)
      		        time_freq = -time_tolerance;
 354  		} /* STA_PLL || STA_PPSTIME */
      	    } /* txc->modes & ADJ_OFFSET */
      	    if (txc->modes & ADJ_TICK) {
      		/* if the quartz is off by more than 10% something is
      		   VERY wrong ! */
      		if (txc->tick < 900000/HZ || txc->tick > 1100000/HZ) {
      		    result = -EINVAL;
      		    goto leave;
      		}
      		tick = txc->tick;
      	    }
      	} /* txc->modes */
      leave:	if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0
      	    || ((time_status & (STA_PPSFREQ|STA_PPSTIME)) != 0
      		&& (time_status & STA_PPSSIGNAL) == 0)
      	    /* p. 24, (b) */
 370  	    || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
      		== (STA_PPSTIME|STA_PPSJITTER))
 372  	    /* p. 24, (c) */
      	    || ((time_status & STA_PPSFREQ) != 0
      		&& (time_status & (STA_PPSWANDER|STA_PPSERROR)) != 0))
      	    /* p. 24, (d) */
      		result = TIME_ERROR;
      	
      	if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
      	    txc->offset	   = save_adjust;
      	else {
      	    if (time_offset < 0)
      		txc->offset = -(-time_offset >> SHIFT_UPDATE);
      	    else
 384  		txc->offset = time_offset >> SHIFT_UPDATE;
      	}
      	txc->freq	   = time_freq + pps_freq;
      	txc->maxerror	   = time_maxerror;
      	txc->esterror	   = time_esterror;
      	txc->status	   = time_status;
      	txc->constant	   = time_constant;
      	txc->precision	   = time_precision;
      	txc->tolerance	   = time_tolerance;
      	txc->tick	   = tick;
      	txc->ppsfreq	   = pps_freq;
      	txc->jitter	   = pps_jitter >> PPS_AVG;
      	txc->shift	   = pps_shift;
      	txc->stabil	   = pps_stabil;
      	txc->jitcnt	   = pps_jitcnt;
      	txc->calcnt	   = pps_calcnt;
      	txc->errcnt	   = pps_errcnt;
      	txc->stbcnt	   = pps_stbcnt;
      	write_unlock_irq(&xtime_lock);
      	do_gettimeofday(&txc->time);
      	return(result);
      }
      
      asmlinkage long sys_adjtimex(struct timex *txc_p)
      {
      	struct timex txc;		/* Local copy of parameter */
      	int ret;
      
      	/* Copy the user data space into the kernel copy
 413  	 * structure. But bear in mind that the structures
      	 * may change
      	 */
      	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
      		return -EFAULT;
      	ret = do_adjtimex(&txc);
      	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
      }