/*
       * INET		An implementation of the TCP/IP protocol suite for the LINUX
       *		operating system.  INET is implemented using the  BSD Socket
       *		interface as the means of communication with the user level.
       *
       *		Implementation of the Transmission Control Protocol(TCP).
       *
       * Version:	$Id: tcp_input.c,v 1.205 2000/12/13 18:31:48 davem Exp $
       *
       * Authors:	Ross Biro, <bir7@leland.Stanford.Edu>
       *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
       *		Mark Evans, <evansmp@uhura.aston.ac.uk>
       *		Corey Minyard <wf-rch!minyard@relay.EU.net>
       *		Florian La Roche, <flla@stud.uni-sb.de>
       *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
       *		Linus Torvalds, <torvalds@cs.helsinki.fi>
       *		Alan Cox, <gw4pts@gw4pts.ampr.org>
       *		Matthew Dillon, <dillon@apollo.west.oic.com>
       *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
       *		Jorge Cwik, <jorge@laser.satlink.net>
       */
      
      /*
       * Changes:
       *		Pedro Roque	:	Fast Retransmit/Recovery.
       *					Two receive queues.
       *					Retransmit queue handled by TCP.
       *					Better retransmit timer handling.
       *					New congestion avoidance.
       *					Header prediction.
       *					Variable renaming.
       *
       *		Eric		:	Fast Retransmit.
       *		Randy Scott	:	MSS option defines.
       *		Eric Schenk	:	Fixes to slow start algorithm.
       *		Eric Schenk	:	Yet another double ACK bug.
       *		Eric Schenk	:	Delayed ACK bug fixes.
       *		Eric Schenk	:	Floyd style fast retrans war avoidance.
       *		David S. Miller	:	Don't allow zero congestion window.
       *		Eric Schenk	:	Fix retransmitter so that it sends
       *					next packet on ack of previous packet.
       *		Andi Kleen	:	Moved open_request checking here
       *					and process RSTs for open_requests.
       *		Andi Kleen	:	Better prune_queue, and other fixes.
       *		Andrey Savochkin:	Fix RTT measurements in the presnce of
       *					timestamps.
       *		Andrey Savochkin:	Check sequence numbers correctly when
       *					removing SACKs due to in sequence incoming
       *					data segments.
       *		Andi Kleen:		Make sure we never ack data there is not
       *					enough room for. Also make this condition
       *					a fatal error if it might still happen.
       *		Andi Kleen:		Add tcp_measure_rcv_mss to make 
       *					connections with MSS<min(MTU,ann. MSS)
       *					work without delayed acks. 
       *		Andi Kleen:		Process packets with PSH set in the
       *					fast path.
       *		J Hadi Salim:		ECN support
       *	 	Andrei Gurtov,
       *		Pasi Sarolahti,
       *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
       *					engine. Lots of bugs are found.
       */
      
      #include <linux/config.h>
      #include <linux/mm.h>
      #include <linux/sysctl.h>
      #include <net/tcp.h>
      #include <net/inet_common.h>
      #include <linux/ipsec.h>
      
      
      /* These are on by default so the code paths get tested.
       * For the final 2.2 this may be undone at our discretion. -DaveM
       */
      int sysctl_tcp_timestamps = 1;
      int sysctl_tcp_window_scaling = 1;
      int sysctl_tcp_sack = 1;
      int sysctl_tcp_fack = 1;
      int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
      #ifdef CONFIG_INET_ECN
      int sysctl_tcp_ecn = 1;
      #else
      int sysctl_tcp_ecn = 0;
      #endif
      int sysctl_tcp_dsack = 1;
      int sysctl_tcp_app_win = 31;
      int sysctl_tcp_adv_win_scale = 2;
      
      int sysctl_tcp_stdurg = 0;
      int sysctl_tcp_rfc1337 = 0;
      int sysctl_tcp_max_orphans = NR_FILE;
      
      #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
      #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
      #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
      #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
      #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
      #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
      #define FLAG_ECE		0x40 /* ECE in this ACK				*/
      #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
      #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
      
      #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
      #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
      #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
      #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
      
      #define IsReno(tp) ((tp)->sack_ok == 0)
      #define IsFack(tp) ((tp)->sack_ok & 2)
      #define IsDSack(tp) ((tp)->sack_ok & 4)
      
      #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
      
      /* Adapt the MSS value used to make delayed ack decision to the 
       * real world.
       */ 
 118  static __inline__ void tcp_measure_rcv_mss(struct tcp_opt *tp, struct sk_buff *skb)
      {
      	unsigned int len, lss;
      
      	lss = tp->ack.last_seg_size; 
      	tp->ack.last_seg_size = 0; 
      
      	/* skb->len may jitter because of SACKs, even if peer
      	 * sends good full-sized frames.
      	 */
      	len = skb->len;
 129  	if (len >= tp->ack.rcv_mss) {
      		tp->ack.rcv_mss = len;
      		/* Dubious? Rather, it is final cut. 8) */
 132  		if (tcp_flag_word(skb->h.th)&TCP_REMNANT)
      			tp->ack.pending |= TCP_ACK_PUSHED;
 134  	} else {
      		/* Otherwise, we make more careful check taking into account,
      		 * that SACKs block is variable.
      		 *
      		 * "len" is invariant segment length, including TCP header.
      		 */
      		len = skb->tail - skb->h.raw;
      		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
      		    /* If PSH is not set, packet should be
      		     * full sized, provided peer TCP is not badly broken.
      		     * This observation (if it is correct 8)) allows
      		     * to handle super-low mtu links fairly.
      		     */
      		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 148  		     !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
      			/* Subtract also invariant (if peer is RFC compliant),
      			 * tcp header plus fixed timestamp option length.
      			 * Resulting "len" is MSS free of SACK jitter.
      			 */
      			len -= tp->tcp_header_len;
      			tp->ack.last_seg_size = len;
 155  			if (len == lss) {
      				tp->ack.rcv_mss = len;
 157  				return;
      			}
      		}
      		tp->ack.pending |= TCP_ACK_PUSHED;
      	}
      }
      
 164  static void tcp_incr_quickack(struct tcp_opt *tp)
      {
      	unsigned quickacks = tp->rcv_wnd/(2*tp->ack.rcv_mss);
      
 168  	if (quickacks==0)
      		quickacks=2;
 170  	if (quickacks > tp->ack.quick)
      		tp->ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
      }
      
 174  void tcp_enter_quickack_mode(struct tcp_opt *tp)
      {
      	tcp_incr_quickack(tp);
      	tp->ack.pingpong = 0;
      	tp->ack.ato = TCP_ATO_MIN;
      }
      
      /* Send ACKs quickly, if "quick" count is not exhausted
       * and the session is not interactive.
       */
      
 185  static __inline__ int tcp_in_quickack_mode(struct tcp_opt *tp)
      {
 187  	return (tp->ack.quick && !tp->ack.pingpong);
      }
      
      /* Buffer size and advertised window tuning.
       *
       * 1. Tuning sk->sndbuf, when connection enters established state.
       */
      
 195  static void tcp_fixup_sndbuf(struct sock *sk)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      	int sndmem = tp->mss_clamp+MAX_TCP_HEADER+16+sizeof(struct sk_buff);
      
 200  	if (sk->sndbuf < 3*sndmem)
      		sk->sndbuf = min(3*sndmem, sysctl_tcp_wmem[2]);
      }
      
      /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
       *
       * All tcp_full_space() is split to two parts: "network" buffer, allocated
       * forward and advertised in receiver window (tp->rcv_wnd) and
       * "application buffer", required to isolate scheduling/application
       * latencies from network.
       * window_clamp is maximal advertised window. It can be less than
       * tcp_full_space(), in this case tcp_full_space() - window_clamp
       * is reserved for "application" buffer. The less window_clamp is
       * the smoother our behaviour from viewpoint of network, but the lower
       * throughput and the higher sensitivity of the connection to losses. 8)
       *
       * rcv_ssthresh is more strict window_clamp used at "slow start"
       * phase to predict further behaviour of this connection.
       * It is used for two goals:
       * - to enforce header prediction at sender, even when application
       *   requires some significant "application buffer". It is check #1.
       * - to prevent pruning of receive queue because of misprediction
       *   of receiver window. Check #2.
       *
       * The scheme does not work when sender sends good segments opening
       * window and then starts to feed us spagetti. But it should work
       * in common situations. Otherwise, we have to rely on queue collapsing.
       */
      
      /* Slow part of check#2. */
      static int
 231  __tcp_grow_window(struct sock *sk, struct tcp_opt *tp, struct sk_buff *skb)
      {
      	/* Optimize this! */
      	int truesize = tcp_win_from_space(skb->truesize)/2;
      	int window = tcp_full_space(sk)/2;
      
 237  	while (tp->rcv_ssthresh <= window) {
 238  		if (truesize <= skb->len)
 239  			return 2*tp->ack.rcv_mss;
      
      		truesize >>= 1;
      		window >>= 1;
      	}
 244  	return 0;
      }
      
      static __inline__ void
 248  tcp_grow_window(struct sock *sk, struct tcp_opt *tp, struct sk_buff *skb)
      {
      	/* Check #1 */
      	if (tp->rcv_ssthresh < tp->window_clamp &&
      	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
 253  	    !tcp_memory_pressure) {
      		int incr;
      
      		/* Check #2. Increase window, if skb with such overhead
      		 * will fit to rcvbuf in future.
      		 */
 259  		if (tcp_win_from_space(skb->truesize) <= skb->len)
      			incr = 2*tp->advmss;
 261  		else
      			incr = __tcp_grow_window(sk, tp, skb);
      
 264  		if (incr) {
      			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
      			tp->ack.quick |= 1;
      		}
      	}
      }
      
      /* 3. Tuning rcvbuf, when connection enters established state. */
      
 273  static void tcp_fixup_rcvbuf(struct sock *sk)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      	int rcvmem = tp->advmss+MAX_TCP_HEADER+16+sizeof(struct sk_buff);
      
      	/* Try to select rcvbuf so that 4 mss-sized segments
      	 * will fit to window and correspoding skbs will fit to our rcvbuf.
      	 * (was 3; 4 is minimum to allow fast retransmit to work.)
      	 */
 282  	while (tcp_win_from_space(rcvmem) < tp->advmss)
      		rcvmem += 128;
 284  	if (sk->rcvbuf < 4*rcvmem)
      		sk->rcvbuf = min(4*rcvmem, sysctl_tcp_rmem[2]);
      }
      
      /* 4. Try to fixup all. It is made iimediately after connection enters
       *    established state.
       */
 291  static void tcp_init_buffer_space(struct sock *sk)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      	int maxwin;
      
 296  	if (!(sk->userlocks&SOCK_RCVBUF_LOCK))
      		tcp_fixup_rcvbuf(sk);
 298  	if (!(sk->userlocks&SOCK_SNDBUF_LOCK))
      		tcp_fixup_sndbuf(sk);
      
      	maxwin = tcp_full_space(sk);
      
 303  	if (tp->window_clamp >= maxwin) {
      		tp->window_clamp = maxwin;
      
 306  		if (sysctl_tcp_app_win && maxwin>4*tp->advmss)
      			tp->window_clamp = max(maxwin-(maxwin>>sysctl_tcp_app_win), 4*tp->advmss);
      	}
      
      	/* Force reservation of one segment. */
      	if (sysctl_tcp_app_win &&
      	    tp->window_clamp > 2*tp->advmss &&
 313  	    tp->window_clamp + tp->advmss > maxwin)
      		tp->window_clamp = max(2*tp->advmss, maxwin-tp->advmss);
      
      	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
      	tp->snd_cwnd_stamp = tcp_time_stamp;
      }
      
      /* 5. Recalculate window clamp after socket hit its memory bounds. */
 321  static void tcp_clamp_window(struct sock *sk, struct tcp_opt *tp)
      {
      	struct sk_buff *skb;
      	int app_win = tp->rcv_nxt - tp->copied_seq;
      	int ofo_win = 0;
      
      	tp->ack.quick = 0;
      
 329  	skb_queue_walk(&tp->out_of_order_queue, skb) {
      		ofo_win += skb->len;
      	}
      
      	/* If overcommit is due to out of order segments,
      	 * do not clamp window. Try to expand rcvbuf instead.
      	 */
 336  	if (ofo_win) {
      		if (sk->rcvbuf < sysctl_tcp_rmem[2] &&
      		    !(sk->userlocks&SOCK_RCVBUF_LOCK) &&
      		    !tcp_memory_pressure &&
 340  		    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0])
      			sk->rcvbuf = min(atomic_read(&sk->rmem_alloc), sysctl_tcp_rmem[2]);
      	}
 343  	if (atomic_read(&sk->rmem_alloc) > sk->rcvbuf) {
      		app_win += ofo_win;
 345  		if (atomic_read(&sk->rmem_alloc) >= 2*sk->rcvbuf)
      			app_win >>= 1;
 347  		if (app_win > tp->ack.rcv_mss)
      			app_win -= tp->ack.rcv_mss;
      		app_win = max(app_win, 2*tp->advmss);
      
 351  		if (!ofo_win)
      			tp->window_clamp = min(tp->window_clamp, app_win);
      		tp->rcv_ssthresh = min(tp->window_clamp, 2*tp->advmss);
      	}
      }
      
      /* There is something which you must keep in mind when you analyze the
       * behavior of the tp->ato delayed ack timeout interval.  When a
       * connection starts up, we want to ack as quickly as possible.  The
       * problem is that "good" TCP's do slow start at the beginning of data
       * transmission.  The means that until we send the first few ACK's the
       * sender will sit on his end and only queue most of his data, because
       * he can only send snd_cwnd unacked packets at any given time.  For
       * each ACK we send, he increments snd_cwnd and transmits more of his
       * queue.  -DaveM
       */
 367  static void tcp_event_data_recv(struct sock *sk, struct tcp_opt *tp, struct sk_buff *skb)
      {
      	u32 now;
      
      	tcp_schedule_ack(tp);
      
      	tcp_measure_rcv_mss(tp, skb);
      
      	now = tcp_time_stamp;
      
 377  	if (!tp->ack.ato) {
      		/* The _first_ data packet received, initialize
      		 * delayed ACK engine.
      		 */
      		tcp_enter_quickack_mode(tp);
 382  	} else {
      		int m = now - tp->ack.lrcvtime;
      
 385  		if (m <= TCP_ATO_MIN/2) {
      			/* The fastest case is the first. */
      			tp->ack.ato = (tp->ack.ato>>1) + TCP_ATO_MIN/2;
 388  		} else if (m < tp->ack.ato) {
      			tp->ack.ato = (tp->ack.ato>>1) + m;
 390  			if (tp->ack.ato > tp->rto)
      				tp->ack.ato = tp->rto;
 392  		} else if (m > tp->rto) {
      			/* Too long gap. Apparently sender falled to
      			 * restart window, so that we send ACKs quickly.
      			 */
      			tcp_incr_quickack(tp);
      			tcp_mem_reclaim(sk);
      		}
      	}
      	tp->ack.lrcvtime = now;
      
 402  	TCP_ECN_check_ce(tp, skb);
      
 404  	if (skb->len >= 128)
      		tcp_grow_window(sk, tp, skb);
      }
      
      /* Called to compute a smoothed rtt estimate. The data fed to this
       * routine either comes from timestamps, or from segments that were
       * known _not_ to have been retransmitted [see Karn/Partridge
       * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
       * piece by Van Jacobson.
       * NOTE: the next three routines used to be one big routine.
       * To save cycles in the RFC 1323 implementation it was better to break
       * it up into three procedures. -- erics
       */
 417  static __inline__ void tcp_rtt_estimator(struct tcp_opt *tp, __u32 mrtt)
      {
      	long m = mrtt; /* RTT */
      
      	/*	The following amusing code comes from Jacobson's
      	 *	article in SIGCOMM '88.  Note that rtt and mdev
      	 *	are scaled versions of rtt and mean deviation.
      	 *	This is designed to be as fast as possible 
      	 *	m stands for "measurement".
      	 *
      	 *	On a 1990 paper the rto value is changed to:
      	 *	RTO = rtt + 4 * mdev
      	 *
      	 * Funny. This algorithm seems to be very broken.
      	 * These formulae increase RTO, when it should be decreased, increase
      	 * too slowly, when it should be incresed fastly, decrease too fastly
      	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
      	 * does not matter how to _calculate_ it. Seems, it was trap
      	 * that VJ failed to avoid. 8)
      	 */
 437  	if(m == 0)
      		m = 1;
 439  	if (tp->srtt != 0) {
      		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
      		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
 442  		if (m < 0) {
      			m = -m;		/* m is now abs(error) */
      			m -= (tp->mdev >> 2);   /* similar update on mdev */
      			/* This is similar to one of Eifel findings.
      			 * Eifel blocks mdev updates when rtt decreases.
      			 * This solution is a bit different: we use finer gain
      			 * for mdev in this case (alpha*beta).
      			 * Like Eifel it also prevents growth of rto,
      			 * but also it limits too fast rto decreases,
      			 * happening in pure Eifel.
      			 */
 453  			if (m > 0)
      				m >>= 3;
 455  		} else {
      			m -= (tp->mdev >> 2);   /* similar update on mdev */
      		}
      		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
 459  		if (tp->mdev > tp->mdev_max) {
      			tp->mdev_max = tp->mdev;
 461  			if (tp->mdev_max > tp->rttvar)
      				tp->rttvar = tp->mdev_max;
      		}
 464  		if (after(tp->snd_una, tp->rtt_seq)) {
 465  			if (tp->mdev_max < tp->rttvar)
      				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
      			tp->rtt_seq = tp->snd_una;
      			tp->mdev_max = TCP_RTO_MIN;
      		}
 470  	} else {
      		/* no previous measure. */
      		tp->srtt = m<<3;	/* take the measured time to be rtt */
      		tp->mdev = m<<2;	/* make sure rto = 3*rtt */
      		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
      		tp->rtt_seq = tp->snd_nxt;
      	}
      }
      
      /* Calculate rto without backoff.  This is the second half of Van Jacobson's
       * routine referred to above.
       */
 482  static __inline__ void tcp_set_rto(struct tcp_opt *tp)
      {
      	/* Old crap is replaced with new one. 8)
      	 *
      	 * More seriously:
      	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
      	 *    It cannot be less due to utterly erratic ACK generation made
      	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
      	 *    to do with delayed acks, because at cwnd>2 true delack timeout
      	 *    is invisible. Actually, Linux-2.4 also generates erratic
      	 *    ACKs in some curcumstances.
      	 */
      	tp->rto = (tp->srtt >> 3) + tp->rttvar;
      
      	/* 2. Fixups made earlier cannot be right.
      	 *    If we do not estimate RTO correctly without them,
      	 *    all the algo is pure shit and should be replaced
      	 *    with correct one. It is exaclty, which we pretend to do.
      	 */
      }
      
      /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
       * guarantees that rto is higher.
       */
 506  static __inline__ void tcp_bound_rto(struct tcp_opt *tp)
      {
 508  	if (tp->rto > TCP_RTO_MAX)
      		tp->rto = TCP_RTO_MAX;
      }
      
      /* Save metrics learned by this TCP session.
         This function is called only, when TCP finishes sucessfully
         i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
       */
 516  void tcp_update_metrics(struct sock *sk)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      	struct dst_entry *dst = __sk_dst_get(sk);
      
      	dst_confirm(dst);
      
 523  	if (dst && (dst->flags&DST_HOST)) {
      		int m;
      
 526  		if (tp->backoff || !tp->srtt) {
      			/* This session failed to estimate rtt. Why?
      			 * Probably, no packets returned in time.
      			 * Reset our results.
      			 */
 531  			if (!(dst->mxlock&(1<<RTAX_RTT)))
      				dst->rtt = 0;
 533  			return;
      		}
      
      		m = dst->rtt - tp->srtt;
      
      		/* If newly calculated rtt larger than stored one,
      		 * store new one. Otherwise, use EWMA. Remember,
      		 * rtt overestimation is always better than underestimation.
      		 */
 542  		if (!(dst->mxlock&(1<<RTAX_RTT))) {
 543  			if (m <= 0)
      				dst->rtt = tp->srtt;
 545  			else
      				dst->rtt -= (m>>3);
      		}
      
 549  		if (!(dst->mxlock&(1<<RTAX_RTTVAR))) {
 550  			if (m < 0)
      				m = -m;
      
      			/* Scale deviation to rttvar fixed point */
      			m >>= 1;
 555  			if (m < tp->mdev)
      				m = tp->mdev;
      
 558  			if (m >= dst->rttvar)
      				dst->rttvar = m;
 560  			else
      				dst->rttvar -= (dst->rttvar - m)>>2;
      		}
      
 564  		if (tp->snd_ssthresh >= 0xFFFF) {
      			/* Slow start still did not finish. */
      			if (dst->ssthresh &&
      			    !(dst->mxlock&(1<<RTAX_SSTHRESH)) &&
 568  			    (tp->snd_cwnd>>1) > dst->ssthresh)
      				dst->ssthresh = (tp->snd_cwnd>>1);
      			if (!(dst->mxlock&(1<<RTAX_CWND)) &&
 571  			    tp->snd_cwnd > dst->cwnd)
      				dst->cwnd = tp->snd_cwnd;
      		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
 574  			   tp->ca_state == TCP_CA_Open) {
      			/* Cong. avoidance phase, cwnd is reliable. */
 576  			if (!(dst->mxlock&(1<<RTAX_SSTHRESH)))
      				dst->ssthresh = max(tp->snd_cwnd>>1, tp->snd_ssthresh);
 578  			if (!(dst->mxlock&(1<<RTAX_CWND)))
      				dst->cwnd = (dst->cwnd + tp->snd_cwnd)>>1;
 580  		} else {
      			/* Else slow start did not finish, cwnd is non-sense,
      			   ssthresh may be also invalid.
      			 */
 584  			if (!(dst->mxlock&(1<<RTAX_CWND)))
      				dst->cwnd = (dst->cwnd + tp->snd_ssthresh)>>1;
      			if (dst->ssthresh &&
      			    !(dst->mxlock&(1<<RTAX_SSTHRESH)) &&
 588  			    tp->snd_ssthresh > dst->ssthresh)
      				dst->ssthresh = tp->snd_ssthresh;
      		}
      
 592  		if (!(dst->mxlock&(1<<RTAX_REORDERING))) {
      			if (dst->reordering < tp->reordering &&
 594  			    tp->reordering != sysctl_tcp_reordering)
      				dst->reordering = tp->reordering;
      		}
      	}
      }
      
      /* Increase initial CWND conservatively: if estimated
       * RTT is low enough (<20msec) or if we have some preset ssthresh.
       *
       * Numbers are taken from RFC1414.
       */
 605  __u32 tcp_init_cwnd(struct tcp_opt *tp)
      {
      	__u32 cwnd;
      
 609  	if (tp->mss_cache > 1460)
 610  		return 2;
      
      	cwnd = (tp->mss_cache > 1095) ? 3 : 4;
      
 614  	if (!tp->srtt || (tp->snd_ssthresh >= 0xFFFF && tp->srtt > ((HZ/50)<<3)))
      		cwnd = 2;
 616  	else if (cwnd > tp->snd_ssthresh)
      		cwnd = tp->snd_ssthresh;
      
 619  	return min(cwnd, tp->snd_cwnd_clamp);
      }
      
      /* Initialize metrics on socket. */
      
 624  static void tcp_init_metrics(struct sock *sk)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      	struct dst_entry *dst = __sk_dst_get(sk);
      
 629  	if (dst == NULL)
 630  		goto reset;
      
      	dst_confirm(dst);
      
 634  	if (dst->mxlock&(1<<RTAX_CWND))
      		tp->snd_cwnd_clamp = dst->cwnd;
 636  	if (dst->ssthresh) {
      		tp->snd_ssthresh = dst->ssthresh;
 638  		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
      			tp->snd_ssthresh = tp->snd_cwnd_clamp;
      	}
 641  	if (dst->reordering && tp->reordering != dst->reordering) {
      		tp->sack_ok &= ~2;
      		tp->reordering = dst->reordering;
      	}
      
 646  	if (dst->rtt == 0)
 647  		goto reset;
      
 649  	if (!tp->srtt && dst->rtt < (TCP_TIMEOUT_INIT<<3))
 650  		goto reset;
      
      	/* Initial rtt is determined from SYN,SYN-ACK.
      	 * The segment is small and rtt may appear much
      	 * less than real one. Use per-dst memory
      	 * to make it more realistic.
      	 *
      	 * A bit of theory. RTT is time passed after "normal" sized packet
      	 * is sent until it is ACKed. In normal curcumstances sending small
      	 * packets force peer to delay ACKs and calculation is correct too.
      	 * The algorithm is adaptive and, provided we follow specs, it
      	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
      	 * tricks sort of "quick acks" for time long enough to decrease RTT
      	 * to low value, and then abruptly stops to do it and starts to delay
      	 * ACKs, wait for troubles.
      	 */
 666  	if (dst->rtt > tp->srtt)
      		tp->srtt = dst->rtt;
 668  	if (dst->rttvar > tp->mdev) {
      		tp->mdev = dst->rttvar;
      		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
      	}
      	tcp_set_rto(tp);
      	tcp_bound_rto(tp);
 674  	if (tp->rto < TCP_TIMEOUT_INIT && !tp->saw_tstamp)
 675  		goto reset;
      	tp->snd_cwnd = tcp_init_cwnd(tp);
      	tp->snd_cwnd_stamp = tcp_time_stamp;
 678  	return;
      
      reset:
      	/* Play conservative. If timestamps are not
      	 * supported, TCP will fail to recalculate correct
      	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
      	 */
 685  	if (!tp->saw_tstamp && tp->srtt) {
      		tp->srtt = 0;
      		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
      		tp->rto = TCP_TIMEOUT_INIT;
      	}
      }
      
 692  static void tcp_update_reordering(struct tcp_opt *tp, int metric, int ts)
      {
 694  	if (metric > tp->reordering) {
      		tp->reordering = min(TCP_MAX_REORDERING, metric);
      
      		/* This exciting event is worth to be remembered. 8) */
 698  		if (ts)
      			NET_INC_STATS_BH(TCPTSReorder);
 700  		else if (IsReno(tp))
      			NET_INC_STATS_BH(TCPRenoReorder);
 702  		else if (IsFack(tp))
      			NET_INC_STATS_BH(TCPFACKReorder);
 704  		else
      			NET_INC_STATS_BH(TCPSACKReorder);
      #if FASTRETRANS_DEBUG > 1
      		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
      		       tp->sack_ok, tp->ca_state,
      		       tp->reordering, tp->fackets_out, tp->sacked_out,
      		       tp->undo_marker ? tp->undo_retrans : 0);
      #endif
      		/* Disable FACK yet. */
      		tp->sack_ok &= ~2;
      	}
      }
      
      /* This procedure tags the retransmission queue when SACKs arrive.
       *
       * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
       * Packets in queue with these bits set are counted in variables
       * sacked_out, retrans_out and lost_out, correspondingly.
       *
       * Valid combinations are:
       * Tag  InFlight	Description
       * 0	1		- orig segment is in flight.
       * S	0		- nothing flies, orig reached receiver.
       * L	0		- nothing flies, orig lost by net.
       * R	2		- both orig and retransmit are in flight.
       * L|R	1		- orig is lost, retransmit is in flight.
       * S|R  1		- orig reached receiver, retrans is still in flight.
       * (L|S|R is logically valid, it could occur when L|R is sacked,
       *  but it is equivalent to plain S and code short-curcuits it to S.
       *  L|S is logically invalid, it would mean -1 packet in flight 8))
       *
       * These 6 states form finite state machine, controlled by the following events:
       * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
       * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
       * 3. Loss detection event of one of three flavors:
       *	A. Scoreboard estimator decided the packet is lost.
       *	   A'. Reno "three dupacks" marks head of queue lost.
       *	   A''. Its FACK modfication, head until snd.fack is lost.
       *	B. SACK arrives sacking data transmitted after never retransmitted
       *	   hole was sent out.
       *	C. SACK arrives sacking SND.NXT at the moment, when the
       *	   segment was retransmitted.
       * 4. D-SACK added new rule: D-SACK changes any tag to S.
       *
       * It is pleasant to note, that state diagram turns out to be commutative,
       * so that we are allowed not to be bothered by order of our actions,
       * when multiple events arrive simultaneously. (see the function below).
       *
       * Reordering detection.
       * --------------------
       * Reordering metric is maximal distance, which a packet can be displaced
       * in packet stream. With SACKs we can estimate it:
       *
       * 1. SACK fills old hole and the corresponding segment was not
       *    ever retransmitted -> reordering. Alas, we cannot use it
       *    when segment was retransmitted.
       * 2. The last flaw is solved with D-SACK. D-SACK arrives
       *    for retransmitted and already SACKed segment -> reordering..
       * Both of these heuristics are not used in Loss state, when we cannot
       * account for retransmits accurately.
       */
      static int
 766  tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      	unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
      	struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
      	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
      	int reord = tp->packets_out;
      	int prior_fackets;
      	u32 lost_retrans = 0;
      	int flag = 0;
      	int i;
      
 778  	if (!tp->sacked_out)
      		tp->fackets_out = 0;
      	prior_fackets = tp->fackets_out;
      
 782  	for (i=0; i<num_sacks; i++, sp++) {
      		struct sk_buff *skb;
      		__u32 start_seq = ntohl(sp->start_seq);
      		__u32 end_seq = ntohl(sp->end_seq);
      		int fack_count = 0;
      		int dup_sack = 0;
      
      		/* Check for D-SACK. */
 790  		if (i == 0) {
      			u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
      
 793  			if (before(start_seq, ack)) {
      				dup_sack = 1;
      				tp->sack_ok |= 4;
      				NET_INC_STATS_BH(TCPDSACKRecv);
      			} else if (num_sacks > 1 &&
      				   !after(end_seq, ntohl(sp[1].end_seq)) &&
 799  				   !before(start_seq, ntohl(sp[1].start_seq))) {
      				dup_sack = 1;
      				tp->sack_ok |= 4;
      				NET_INC_STATS_BH(TCPDSACKOfoRecv);
      			}
      
      			/* D-SACK for already forgotten data...
      			 * Do dumb counting. */
      			if (dup_sack &&
      			    !after(end_seq, prior_snd_una) &&
 809  			    after(end_seq, tp->undo_marker))
      				tp->undo_retrans--;
      
      			/* Eliminate too old ACKs, but take into
      			 * account more or less fresh ones, they can
      			 * contain valid SACK info.
      			 */
 816  			if (before(ack, prior_snd_una-tp->max_window))
 817  				return 0;
      		}
      
      		/* Event "B" in the comment above. */
 821  		if (after(end_seq, tp->high_seq))
      			flag |= FLAG_DATA_LOST;
      
 824  		for_retrans_queue(skb, sk, tp) {
      			u8 sacked = TCP_SKB_CB(skb)->sacked;
      			int in_sack;
      
      			/* The retransmission queue is always in order, so
      			 * we can short-circuit the walk early.
      			 */
 831  			if(!before(TCP_SKB_CB(skb)->seq, end_seq))
 832  				break;
      
      			fack_count++;
      
      			in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
      				!before(end_seq, TCP_SKB_CB(skb)->end_seq);
      
      			/* Account D-SACK for retransmitted packet. */
      			if ((dup_sack && in_sack) &&
      			    (sacked & TCPCB_RETRANS) &&
 842  			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
      				tp->undo_retrans--;
      
      			/* The frame is ACKed. */
 846  			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
 847  				if (sacked&TCPCB_RETRANS) {
      					if ((dup_sack && in_sack) &&
 849  					    (sacked&TCPCB_SACKED_ACKED))
      						reord = min(fack_count, reord);
 851  				} else {
      					/* If it was in a hole, we detected reordering. */
      					if (fack_count < prior_fackets &&
 854  					    !(sacked&TCPCB_SACKED_ACKED))
      						reord = min(fack_count, reord);
      				}
      
      				/* Nothing to do; acked frame is about to be dropped. */
 859  				continue;
      			}
      
      			if ((sacked&TCPCB_SACKED_RETRANS) &&
      			    after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
 864  			    (!lost_retrans || after(end_seq, lost_retrans)))
      				lost_retrans = end_seq;
      
 867  			if (!in_sack)
 868  				continue;
      
 870  			if (!(sacked&TCPCB_SACKED_ACKED)) {
 871  				if (sacked & TCPCB_SACKED_RETRANS) {
      					/* If the segment is not tagged as lost,
      					 * we do not clear RETRANS, believing
      					 * that retransmission is still in flight.
      					 */
 876  					if (sacked & TCPCB_LOST) {
      						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
      						tp->lost_out--;
      						tp->retrans_out--;
      					}
 881  				} else {
      					/* New sack for not retransmitted frame,
      					 * which was in hole. It is reordering.
      					 */
      					if (!(sacked & TCPCB_RETRANS) &&
 886  					    fack_count < prior_fackets)
      						reord = min(fack_count, reord);
      
 889  					if (sacked & TCPCB_LOST) {
      						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
      						tp->lost_out--;
      					}
      				}
      
      				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
      				flag |= FLAG_DATA_SACKED;
      				tp->sacked_out++;
      
 899  				if (fack_count > tp->fackets_out)
      					tp->fackets_out = fack_count;
 901  			} else {
 902  				if (dup_sack && (sacked&TCPCB_RETRANS))
      					reord = min(fack_count, reord);
      			}
      
      			/* D-SACK. We can detect redundant retransmission
      			 * in S|R and plain R frames and clear it.
      			 * undo_retrans is decreased above, L|R frames
      			 * are accounted above as well.
      			 */
      			if (dup_sack &&
 912  			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
      				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
      				tp->retrans_out--;
      			}
      		}
      	}
      
      	/* Check for lost retransmit. This superb idea is
      	 * borrowed from "ratehalving". Event "C".
      	 * Later note: FACK people cheated me again 8),
      	 * we have to account for reordering! Ugly,
      	 * but should help.
      	 */
 925  	if (lost_retrans && tp->ca_state == TCP_CA_Recovery) {
      		struct sk_buff *skb;
      
 928  		for_retrans_queue(skb, sk, tp) {
 929  			if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
 930  				break;
 931  			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
 932  				continue;
      			if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
      			    after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
      			    (IsFack(tp) ||
 936  			     !before(lost_retrans, TCP_SKB_CB(skb)->ack_seq+tp->reordering*tp->mss_cache))) {
      				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
      				tp->retrans_out--;
      
 940  				if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
      					tp->lost_out++;
      					TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
      					flag |= FLAG_DATA_SACKED;
      					NET_INC_STATS_BH(TCPLostRetransmit);
      				}
      			}
      		}
      	}
      
      	tp->left_out = tp->sacked_out + tp->lost_out;
      
 952  	if (reord < tp->fackets_out && tp->ca_state != TCP_CA_Loss)
      		tcp_update_reordering(tp, (tp->fackets_out+1)-reord, 0);
      
      #if FASTRETRANS_DEBUG > 0
 956  	BUG_TRAP((int)tp->sacked_out >= 0);
 957  	BUG_TRAP((int)tp->lost_out >= 0);
 958  	BUG_TRAP((int)tp->retrans_out >= 0);
 959  	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
      #endif
 961  	return flag;
      }
      
 964  void tcp_clear_retrans(struct tcp_opt *tp)
      {
      	tp->left_out = 0;
      	tp->retrans_out = 0;
      
      	tp->fackets_out = 0;
      	tp->sacked_out = 0;
      	tp->lost_out = 0;
      
      	tp->undo_marker = 0;
      	tp->undo_retrans = 0;
      }
      
      /* Enter Loss state. If "how" is not zero, forget all SACK information
       * and reset tags completely, otherwise preserve SACKs. If receiver
       * dropped its ofo queue, we will know this due to reneging detection.
       */
 981  void tcp_enter_loss(struct sock *sk, int how)
      {
      	struct tcp_opt *tp = &sk->tp_pinfo.af_tcp;
      	struct sk_buff *skb;
      	int cnt = 0;
      
      	/* Reduce ssthresh if it has not yet been made inside this window. */
      	if (tp->ca_state <= TCP_CA_Disorder ||
      	    tp->snd_una == tp->high_seq ||
 990  	    (tp->ca_state == TCP_CA_Loss && !tp->retransmits)) {
      		tp->prior_ssthresh = tcp_current_ssthresh(tp);
      		tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
      	}
      	tp->snd_cwnd = 1;
      	tp->snd_cwnd_cnt = 0;
      	tp->snd_cwnd_stamp = tcp_time_stamp;
      
      	tcp_clear_retrans(tp);
      
      	/* Push undo marker, if it was plain RTO and nothing
      	 * was retransmitted. */
1002  	if (!how)
      		tp->undo_marker = tp->snd_una;
      
1005  	for_retrans_queue(skb, sk, tp) {
      		cnt++;
1007  		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
      			tp->undo_marker = 0;
      		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1010  		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
      			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
      			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
      			tp->lost_out++;
1014  		} else {
      			tp->sacked_out++;
      			tp->fackets_out = cnt;
      		}
      	}
      	tp->left_out = tp->sacked_out + tp->lost_out;
      
      	tp->reordering = min(tp->reordering, sysctl_tcp_reordering);
      	tp->ca_state = TCP_CA_Loss;
      	tp->high_seq = tp->snd_nxt;
1024  	TCP_ECN_queue_cwr(tp);
      }
      
1027  static int tcp_check_sack_reneging(struct sock *sk, struct tcp_opt *tp)
      {
      	struct sk_buff *skb;
      
      	/* If ACK arrived pointing to a remembered SACK,
      	 * it means that our remembered SACKs do not reflect
      	 * real state of receiver i.e.
      	 * receiver _host_ is heavily congested (or buggy).
      	 * Do processing similar to RTO timeout.
      	 */
      	if ((skb = skb_peek(&sk->write_queue)) != NULL &&
1038  	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
      		NET_INC_STATS_BH(TCPSACKReneging);
      
      		tcp_enter_loss(sk, 1);
      		tp->retransmits++;
      		tcp_retransmit_skb(sk, skb_peek(&sk->write_queue));
      		tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1045  		return 1;
      	}
1047  	return 0;
      }
      
1050  static inline int tcp_fackets_out(struct tcp_opt *tp)
      {
1052  	return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
      }
      
      
      /* Linux NewReno/SACK/FACK/ECN state machine.
       * --------------------------------------
       *
       * "Open"	Normal state, no dubious events, fast path.
       * "Disorder"   In all the respects it is "Open",
       *		but requires a bit more attention. It is entered when
       *		we see some SACKs or dupacks. It is split of "Open"
       *		mainly to move some processing from fast path to slow one.
       * "CWR"	CWND was reduced due to some Congestion Notification event.
       *		It can be ECN, ICMP source quench, local device congestion.
       * "Recovery"	CWND was reduced, we are fast-retransmitting.
       * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
       *
       * tcp_fastretrans_alert() is entered:
       * - each incoming ACK, if state is not "Open"
       * - when arrived ACK is unusual, namely:
       *	* SACK
       *	* Duplicate ACK.
       *	* ECN ECE.
       *
       * Counting packets in flight is pretty simple.
       *
       *	in_flight = packets_out - left_out + retrans_out
       *
       *	packets_out is SND.NXT-SND.UNA counted in packets.
       *
       *	retrans_out is number of retransmitted segments.
       *
       *	left_out is number of segments left network, but not ACKed yet.
       *
       *		left_out = sacked_out + lost_out
       *
       *     sacked_out: Packets, which arrived to receiver out of order
       *		   and hence not ACKed. With SACKs this number is simply
       *		   amount of SACKed data. Even without SACKs
       *		   it is easy to give pretty reliable estimate of this number,
       *		   counting duplicate ACKs.
       *
       *       lost_out: Packets lost by network. TCP has no explicit
       *		   "loss notification" feedback from network (for now).
       *		   It means that this number can be only _guessed_.
       *		   Actually, it is the heuristics to predict lossage that
       *		   distinguishes different algorithms.
       *
       *	F.e. after RTO, when all the queue is considered as lost,
       *	lost_out = packets_out and in_flight = retrans_out.
       *
       *		Essentially, we have now two algorithms counting
       *		lost packets.
       *
       *		FACK: It is the simplest heuristics. As soon as we decided
       *		that something is lost, we decide that _all_ not SACKed
       *		packets until the most forward SACK are lost. I.e.
       *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
       *		It is absolutely correct estimate, if network does not reorder
       *		packets. And it loses any connection to reality when reordering
       *		takes place. We use FACK by default until reordering
       *		is suspected on the path to this destination.
       *
       *		NewReno: when Recovery is entered, we assume that one segment
       *		is lost (classic Reno). While we are in Recovery and
       *		a partial ACK arrives, we assume that one more packet
       *		is lost (NewReno). This heuristics are the same in NewReno
       *		and SACK.
       *
       *  Imagine, that's all! Forget about all this shamanism about CWND inflation
       *  deflation etc. CWND is real congestion window, never inflated, changes
       *  only according to classic VJ rules.
       *
       * Really tricky (and requiring careful tuning) part of algorithm
       * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
       * The first determines the moment _when_ we should reduce CWND and,
       * hence, slow down forward transmission. In fact, it determines the moment
       * when we decide that hole is caused by loss, rather than by a reorder.
       *
       * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
       * holes, caused by lost packets.
       *
       * And the most logically complicated part of algorithm is undo
       * heuristics. We detect false retransmits due to both too early
       * fast retransmit (reordering) and underestimated RTO, analyzing
       * timestamps and D-SACKs. When we detect that some segments were
       * retransmitted by mistake and CWND reduction was wrong, we undo
       * window reduction and abort recovery phase. This logic is hidden
       * inside several functions named tcp_try_undo_<something>.
       */
      
      /* This function decides, when we should leave Disordered state
       * and enter Recovery phase, reducing congestion window.
       *
       * Main question: may we further continue forward transmission
       * with the same cwnd?
       */
      static int
1150  tcp_time_to_recover(struct sock *sk, struct tcp_opt *tp)
      {
      	/* Trick#1: The loss is proven. */
1153  	if (tp->lost_out)
1154  		return 1;
      
      	/* Not-A-Trick#2 : Classic rule... */
1157  	if (tcp_fackets_out(tp) > tp->reordering)
1158  		return 1;
      
      	/* Trick#3: It is still not OK... But will it be useful to delay
      	 * recovery more?
      	 */
      	if (tp->packets_out <= tp->reordering &&
      	    tp->sacked_out >= max(tp->packets_out/2, sysctl_tcp_reordering) &&
1165  	    !tcp_may_send_now(sk, tp)) {
      		/* We have nothing to send. This connection is limited
      		 * either by receiver window or by application.
      		 */
1169  		return 1;
      	}
      
1172  	return 0;
      }
      
      /* If we receive more dupacks than we expected counting segments
       * in assumption of absent reordering, interpret this as reordering.
       * The only another reason could be bug in receiver TCP.
       */
1179  static void tcp_check_reno_reordering(struct tcp_opt *tp, int addend)
      {
1181  	if (tp->sacked_out + 1 > tp->packets_out) {
      		tp->sacked_out = tp->packets_out ? tp->packets_out - 1 : 0;
      		tcp_update_reordering(tp, tp->packets_out+addend, 0);
      	}
      }
      
      /* Emulate SACKs for SACKless connection: account for a new dupack. */
      
1189  static void tcp_add_reno_sack(struct tcp_opt *tp)
      {
      	++tp->sacked_out;
      	tcp_check_reno_reordering(tp, 0);
      	tp->left_out = tp->sacked_out + tp->lost_out;
      }
      
      /* Account for ACK, ACKing some data in Reno Recovery phase. */
      
1198  static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_opt *tp, int acked)
      {
1200  	if (acked > 0) {
      		/* One ACK eated lost packet. Must eat! */
1202  		BUG_TRAP(tp->lost_out == 0);
      
      		/* The rest eat duplicate ACKs. */
1205  		if (acked-1 >= tp->sacked_out)
      			tp->sacked_out = 0;
1207  		else
      			tp->sacked_out -= acked-1;
      	}
      	tcp_check_reno_reordering(tp, acked);
      	tp->left_out = tp->sacked_out + tp->lost_out;
      }
      
1214  static inline void tcp_reset_reno_sack(struct tcp_opt *tp)
      {
      	tp->sacked_out = 0;
      	tp->left_out = tp->lost_out;
      }
      
      /* Mark head of queue up as lost. */
      static void
1222  tcp_mark_head_lost(struct sock *sk, struct tcp_opt *tp, int packets, u32 high_seq)
      {
      	struct sk_buff *skb;
      	int cnt = packets;
      
1227  	BUG_TRAP(cnt <= tp->packets_out);
      
1229  	for_retrans_queue(skb, sk, tp) {
1230  		if (--cnt < 0 || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1231  			break;
1232  		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
      			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
      			tp->lost_out++;
      		}
      	}
      	tp->left_out = tp->sacked_out + tp->lost_out;
      }
      
      /* Account newly detected lost packet(s) */
      
1242  static void tcp_update_scoreboard(struct sock *sk, struct tcp_opt *tp)
      {
1244  	if (IsFack(tp)) {
      		int lost = tp->fackets_out - tp->reordering;
1246  		if (lost <= 0)
      			lost = 1;
      		tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1249  	} else {
      		tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
      	}
      }
      
      /* CWND moderation, preventing bursts due to too big ACKs
       * in dubious situations.
       */
1257  static __inline__ void tcp_moderate_cwnd(struct tcp_opt *tp)
      {
      	tp->snd_cwnd = min(tp->snd_cwnd,
      			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
      	tp->snd_cwnd_stamp = tcp_time_stamp;
      }
      
      /* Decrease cwnd each second ack. */
      
1266  static void tcp_cwnd_down(struct tcp_opt *tp)
      {
      	int decr = tp->snd_cwnd_cnt + 1;
      
      	tp->snd_cwnd_cnt = decr&1;
      	decr >>= 1;
      
1273  	if (decr && tp->snd_cwnd > tp->snd_ssthresh/2)
      		tp->snd_cwnd -= decr;
      
      	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
      	tp->snd_cwnd_stamp = tcp_time_stamp;
      }
      
      /* Nothing was retransmitted or returned timestamp is less
       * than timestamp of the first retransmission.
       */
1283  static __inline__ int tcp_packet_delayed(struct tcp_opt *tp)
      {
      	return !tp->retrans_stamp ||
      		(tp->saw_tstamp && tp->rcv_tsecr &&
1287  		 (__s32)(tp->rcv_tsecr - tp->retrans_stamp) < 0);
      }
      
      /* Undo procedures. */
      
      #if FASTRETRANS_DEBUG > 1
      static void DBGUNDO(struct sock *sk, struct tcp_opt *tp, const char *msg)
      {
      	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
      	       msg,
      	       NIPQUAD(sk->daddr), ntohs(sk->dport),
      	       tp->snd_cwnd, tp->left_out,
      	       tp->snd_ssthresh, tp->prior_ssthresh, tp->packets_out);
      }
      #else
      #define DBGUNDO(x...) do { } while (0)
      #endif
      
1305  static void tcp_undo_cwr(struct tcp_opt *tp, int undo)
      {
1307  	if (tp->prior_ssthresh) {
      		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1309  		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
      			tp->snd_ssthresh = tp->prior_ssthresh;
1311  			TCP_ECN_withdraw_cwr(tp);
      		}
1313  	} else {
      		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
      	}
      	tcp_moderate_cwnd(tp);
      	tp->snd_cwnd_stamp = tcp_time_stamp;
      }
      
1320  static inline int tcp_may_undo(struct tcp_opt *tp)
      {
      	return tp->undo_marker &&
1323  		(!tp->undo_retrans || tcp_packet_delayed(tp));
      }
      
      /* People celebrate: "We love our President!" */
1327  static int tcp_try_undo_recovery(struct sock *sk, struct tcp_opt *tp)
      {
1329  	if (tcp_may_undo(tp)) {
      		/* Happy end! We did not retransmit anything
      		 * or our original transmission succeeded.
      		 */
1333  		DBGUNDO(sk, tp, tp->ca_state == TCP_CA_Loss ? "loss" : "retrans");
      		tcp_undo_cwr(tp, 1);
1335  		if (tp->ca_state == TCP_CA_Loss)
      			NET_INC_STATS_BH(TCPLossUndo);
1337  		else
      			NET_INC_STATS_BH(TCPFullUndo);
      		tp->undo_marker = 0;
      	}
1341  	if (tp->snd_una == tp->high_seq && IsReno(tp)) {
      		/* Hold old state until something *above* high_seq
      		 * is ACKed. For Reno it is MUST to prevent false
      		 * fast retransmits (RFC2582). SACK TCP is safe. */
      		tcp_moderate_cwnd(tp);
1346  		return 1;
      	}
      	tp->ca_state = TCP_CA_Open;
1349  	return 0;
      }
      
      /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1353  static void tcp_try_undo_dsack(struct sock *sk, struct tcp_opt *tp)
      {
1355  	if (tp->undo_marker && !tp->undo_retrans) {
1356  		DBGUNDO(sk, tp, "D-SACK");
      		tcp_undo_cwr(tp, 1);
      		tp->undo_marker = 0;
      		NET_INC_STATS_BH(TCPDSACKUndo);
      	}
      }
      
      /* Undo during fast recovery after partial ACK. */
      
1365  static int tcp_try_undo_partial(struct sock *sk, struct tcp_opt *tp, int acked)
      {
      	/* Partial ACK arrived. Force Hoe's retransmit. */
      	int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
      
1370  	if (tcp_may_undo(tp)) {
      		/* Plain luck! Hole if filled with delayed
      		 * packet, rather than with a retransmit.
      		 */
1374  		if (tp->retrans_out == 0)
      			tp->retrans_stamp = 0;
      
      		tcp_update_reordering(tp, tcp_fackets_out(tp)+acked, 1);
      
1379  		DBGUNDO(sk, tp, "Hoe");
      		tcp_undo_cwr(tp, 0);
      		NET_INC_STATS_BH(TCPPartialUndo);
      
      		/* So... Do not make Hoe's retransmit yet.
      		 * If the first packet was delayed, the rest
      		 * ones are most probably delayed as well.
      		 */
      		failed = 0;
      	}
1389  	return failed;
      }
      
      /* Undo during loss recovery after partial ACK. */
1393  static int tcp_try_undo_loss(struct sock *sk, struct tcp_opt *tp)
      {
1395  	if (tcp_may_undo(tp)) {
      		struct sk_buff *skb;
1397  		for_retrans_queue(skb, sk, tp) {
      			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
      		}
1400  		DBGUNDO(sk, tp, "partial loss");
      		tp->lost_out = 0;
      		tp->left_out = tp->sacked_out;
      		tcp_undo_cwr(tp, 1);
      		NET_INC_STATS_BH(TCPLossUndo);
      		tp->retransmits = 0;
      		tp->undo_marker = 0;
1407  		if (!IsReno(tp))
      			tp->ca_state = TCP_CA_Open;
1409  		return 1;
      	}
1411  	return 0;
      }
      
1414  static __inline__ void tcp_complete_cwr(struct tcp_opt *tp)
      {
      	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
      	tp->snd_cwnd_stamp = tcp_time_stamp;
      }
      
1420  static void tcp_try_to_open(struct sock *sk, struct tcp_opt *tp, int flag)
      {
      	tp->left_out = tp->sacked_out;
      
1424  	if (tp->retrans_out == 0)
      		tp->retrans_stamp = 0;
      
1427  	if (flag&FLAG_ECE)
      		tcp_enter_cwr(tp);
      
1430  	if (tp->ca_state != TCP_CA_CWR) {
      		int state = TCP_CA_Open;
      
      		if (tp->left_out ||
      		    tp->retrans_out ||
1435  		    tp->undo_marker)
      			state = TCP_CA_Disorder;
      
1438  		if (tp->ca_state != state) {
      			tp->ca_state = state;
      			tp->high_seq = tp->snd_nxt;
      		}
      		tcp_moderate_cwnd(tp);
1443  	} else {
      		tcp_cwnd_down(tp);
      	}
      }
      
      /* Process an event, which can update packets-in-flight not trivially.
       * Main goal of this function is to calculate new estimate for left_out,
       * taking into account both packets sitting in receiver's buffer and
       * packets lost by network.
       *
       * Besides that it does CWND reduction, when packet loss is detected
       * and changes state of machine.
       *
       * It does _not_ decide what to send, it is made in function
       * tcp_xmit_retransmit_queue().
       */
      static void
1460  tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
      		      int prior_packets, int flag)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      	int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
      
      	/* Some technical things:
      	 * 1. Reno does not count dupacks (sacked_out) automatically. */
1468  	if (!tp->packets_out)
      		tp->sacked_out = 0;
              /* 2. SACK counts snd_fack in packets inaccurately. */
1471  	if (tp->sacked_out == 0)
      		tp->fackets_out = 0;
      
              /* Now state machine starts.
      	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1476  	if (flag&FLAG_ECE)
      		tp->prior_ssthresh = 0;
      
      	/* B. In all the states check for reneging SACKs. */
1480  	if (tp->sacked_out && tcp_check_sack_reneging(sk, tp))
1481  		return;
      
      	/* C. Process data loss notification, provided it is valid. */
      	if ((flag&FLAG_DATA_LOST) &&
      	    before(tp->snd_una, tp->high_seq) &&
      	    tp->ca_state != TCP_CA_Open &&
1487  	    tp->fackets_out > tp->reordering) {
      		tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
      		NET_INC_STATS_BH(TCPLoss);
      	}
      
      	/* D. Synchronize left_out to current state. */
      	tp->left_out = tp->sacked_out + tp->lost_out;
      
      	/* E. Check state exit conditions. State can be terminated
      	 *    when high_seq is ACKed. */
1497  	if (tp->ca_state == TCP_CA_Open) {
1498  		BUG_TRAP(tp->retrans_out == 0);
      		tp->retrans_stamp = 0;
1500  	} else if (!before(tp->snd_una, tp->high_seq)) {
1501  		switch (tp->ca_state) {
1502  		case TCP_CA_Loss:
      			tp->retransmits = 0;
1504  			if (tcp_try_undo_recovery(sk, tp))
1505  				return;
1506  			break;
      
1508  		case TCP_CA_CWR:
      			/* CWR is to be held something *above* high_seq
      			 * is ACKed for CWR bit to reach receiver. */
1511  			if (tp->snd_una != tp->high_seq) {
      				tcp_complete_cwr(tp);
      				tp->ca_state = TCP_CA_Open;
      			}
1515  			break;
      
1517  		case TCP_CA_Disorder:
      			tcp_try_undo_dsack(sk, tp);
      			tp->undo_marker = 0;
      			tp->ca_state = TCP_CA_Open;
1521  			break;
      
1523  		case TCP_CA_Recovery:
1524  			if (IsReno(tp))
      				tcp_reset_reno_sack(tp);
1526  			if (tcp_try_undo_recovery(sk, tp))
1527  				return;
      			tcp_complete_cwr(tp);
1529  			break;
      		}
      	}
      
      	/* F. Process state. */
1534  	switch (tp->ca_state) {
1535  	case TCP_CA_Recovery:
1536  		if (prior_snd_una == tp->snd_una) {
1537  			if (IsReno(tp) && is_dupack)
      				tcp_add_reno_sack(tp);
1539  		} else {
      			int acked = prior_packets - tp->packets_out;
1541  			if (IsReno(tp))
      				tcp_remove_reno_sacks(sk, tp, acked);
      			is_dupack = tcp_try_undo_partial(sk, tp, acked);
      		}
1545  		break;
1546  	case TCP_CA_Loss:
1547  		if (flag & FLAG_ACKED)
      			tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1549  		if (!tcp_try_undo_loss(sk, tp)) {
      			tcp_moderate_cwnd(tp);
      			tcp_xmit_retransmit_queue(sk);
1552  			return;
      		}
1554  		if (tp->ca_state != TCP_CA_Open)
1555  			return;
      		/* Loss is undone; fall through to processing in Open state. */
1557  	default:
1558  		if (IsReno(tp)) {
1559  			if (tp->snd_una != prior_snd_una)
      				tcp_reset_reno_sack(tp);
1561  			if (is_dupack)
      				tcp_add_reno_sack(tp);
      		}
      
1565  		if (tp->ca_state == TCP_CA_Disorder)
      			tcp_try_undo_dsack(sk, tp);
      
1568  		if (!tcp_time_to_recover(sk, tp)) {
      			tcp_try_to_open(sk, tp, flag);
1570  			return;
      		}
      
      		/* Otherwise enter Recovery state */
      
1575  		if (IsReno(tp))
      			NET_INC_STATS_BH(TCPRenoRecovery);
1577  		else
      			NET_INC_STATS_BH(TCPSackRecovery);
      
      		tp->high_seq = tp->snd_nxt;
      		tp->prior_ssthresh = 0;
      		tp->undo_marker = tp->snd_una;
      		tp->undo_retrans = tp->retrans_out;
      
1585  		if (tp->ca_state < TCP_CA_CWR) {
1586  			if (!(flag&FLAG_ECE))
      				tp->prior_ssthresh = tcp_current_ssthresh(tp);
      			tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
1589  			TCP_ECN_queue_cwr(tp);
      		}
      
      		tp->snd_cwnd_cnt = 0;
      		tp->ca_state = TCP_CA_Recovery;
      	}
      
1596  	if (is_dupack)
      		tcp_update_scoreboard(sk, tp);
      	tcp_cwnd_down(tp);
      	tcp_xmit_retransmit_queue(sk);
      }
      
      /* Read draft-ietf-tcplw-high-performance before mucking
       * with this code. (Superceeds RFC1323)
       */
1605  static void tcp_ack_saw_tstamp(struct tcp_opt *tp, int flag)
      {
      	__u32 seq_rtt;
      
      	/* RTTM Rule: A TSecr value received in a segment is used to
      	 * update the averaged RTT measurement only if the segment
      	 * acknowledges some new data, i.e., only if it advances the
      	 * left edge of the send window.
      	 *
      	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
      	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
      	 */
      	seq_rtt = tcp_time_stamp - tp->rcv_tsecr;
      	tcp_rtt_estimator(tp, seq_rtt);
      	tcp_set_rto(tp);
1620  	if (tp->backoff) {
1621  		if (!tp->retransmits || !(flag & FLAG_RETRANS_DATA_ACKED))
      			tp->backoff = 0;
1623  		else
      			tp->rto <<= tp->backoff;
      	}
      	tcp_bound_rto(tp);
      }
      
1629  static void tcp_ack_no_tstamp(struct tcp_opt *tp, u32 seq_rtt, int flag)
      {
      	/* We don't have a timestamp. Can only use
      	 * packets that are not retransmitted to determine
      	 * rtt estimates. Also, we must not reset the
      	 * backoff for rto until we get a non-retransmitted
      	 * packet. This allows us to deal with a situation
      	 * where the network delay has increased suddenly.
      	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
      	 */
      
1640  	if (flag & FLAG_RETRANS_DATA_ACKED)
1641  		return;
      
      	tcp_rtt_estimator(tp, seq_rtt);
      	tcp_set_rto(tp);
1645  	if (tp->backoff) {
      		/* To relax it? We have valid sample as soon as we are
      		 * here. Why not to clear backoff?
      		 */
1649  		if (!tp->retransmits)
      			tp->backoff = 0;
1651  		else
      			tp->rto <<= tp->backoff;
      	}
      	tcp_bound_rto(tp);
      }
      
      static __inline__ void
1658  tcp_ack_update_rtt(struct tcp_opt *tp, int flag, s32 seq_rtt)
      {
      	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
1661  	if (tp->saw_tstamp && tp->rcv_tsecr)
      		tcp_ack_saw_tstamp(tp, flag);
1663  	else if (seq_rtt >= 0)
      		tcp_ack_no_tstamp(tp, seq_rtt, flag);
      }
      
      /* This is Jacobson's slow start and congestion avoidance. 
       * SIGCOMM '88, p. 328.
       */
1670  static __inline__ void tcp_cong_avoid(struct tcp_opt *tp)
      {
1672          if (tp->snd_cwnd <= tp->snd_ssthresh) {
                      /* In "safe" area, increase. */
1674  		if (tp->snd_cwnd < tp->snd_cwnd_clamp)
      			tp->snd_cwnd++;
1676  	} else {
                      /* In dangerous area, increase slowly.
      		 * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
      		 */
1680  		if (tp->snd_cwnd_cnt >= tp->snd_cwnd) {
1681  			if (tp->snd_cwnd < tp->snd_cwnd_clamp)
      				tp->snd_cwnd++;
      			tp->snd_cwnd_cnt=0;
1684  		} else
      			tp->snd_cwnd_cnt++;
              }
      }
      
      /* Restart timer after forward progress on connection.
       * RFC2988 recommends (and BSD does) to restart timer to now+rto,
       * which is certainly wrong and effectively means that
       * rto includes one more _full_ rtt.
       *
       * For details see:
       * 	ftp://ftp.inr.ac.ru:/ip-routing/README.rto
       */
      
1698  static __inline__ void tcp_ack_packets_out(struct sock *sk, struct tcp_opt *tp)
      {
1700  	if (tp->packets_out==0) {
      		tcp_clear_xmit_timer(sk, TCP_TIME_RETRANS);
1702  	} else {
      		struct sk_buff *skb = skb_peek(&sk->write_queue);
      		__u32 when = tp->rto + tp->rttvar - (tcp_time_stamp - TCP_SKB_CB(skb)->when);
      
1706  		if ((__s32)when < (__s32)tp->rttvar)
      			when = tp->rttvar;
      		tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, when);
      	}
      }
      
      /* Remove acknowledged frames from the retransmission queue. */
1713  static int tcp_clean_rtx_queue(struct sock *sk)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      	struct sk_buff *skb;
      	__u32 now = tcp_time_stamp;
      	int acked = 0;
      	__s32 seq_rtt = -1;
      
1721  	while((skb=skb_peek(&sk->write_queue)) && (skb != tp->send_head)) {
      		struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 
      		__u8 sacked = scb->sacked;
      
      		/* If our packet is before the ack sequence we can
      		 * discard it as it's confirmed to have arrived at
      		 * the other end.
      		 */
1729  		if (after(scb->end_seq, tp->snd_una))
1730  			break;
      
      		/* Initial outgoing SYN's get put onto the write_queue
      		 * just like anything else we transmit.  It is not
      		 * true data, and if we misinform our callers that
      		 * this ACK acks real data, we will erroneously exit
      		 * connection startup slow start one packet too
      		 * quickly.  This is severely frowned upon behavior.
      		 */
1739  		if(!(scb->flags & TCPCB_FLAG_SYN)) {
      			acked |= FLAG_DATA_ACKED;
1741  		} else {
      			acked |= FLAG_SYN_ACKED;
      		}
      
1745  		if (sacked) {
1746  			if(sacked & TCPCB_RETRANS) {
1747  				if(sacked & TCPCB_SACKED_RETRANS)
      					tp->retrans_out--;
      				acked |= FLAG_RETRANS_DATA_ACKED;
      				seq_rtt = -1;
1751  			} else if (seq_rtt < 0)
      				seq_rtt = now - scb->when;
1753  			if(sacked & TCPCB_SACKED_ACKED)
      				tp->sacked_out--;
1755  			if(sacked & TCPCB_LOST)
      				tp->lost_out--;
1757  			if(sacked & TCPCB_URG) {
      				if (tp->urg_mode &&
1759  				    !before(scb->end_seq, tp->snd_up))
      					tp->urg_mode = 0;
      			}
1762  		} else if (seq_rtt < 0)
      			seq_rtt = now - scb->when;
1764  		if(tp->fackets_out)
      			tp->fackets_out--;
      		tp->packets_out--;
      		__skb_unlink(skb, skb->list);
      		tcp_free_skb(sk, skb);
      	}
      
1771  	if (acked&FLAG_ACKED) {
      		tcp_ack_update_rtt(tp, acked, seq_rtt);
      		tcp_ack_packets_out(sk, tp);
      	}
      
      #if FASTRETRANS_DEBUG > 0
1777  	BUG_TRAP((int)tp->sacked_out >= 0);
1778  	BUG_TRAP((int)tp->lost_out >= 0);
1779  	BUG_TRAP((int)tp->retrans_out >= 0);
1780  	if (tp->packets_out==0 && tp->sack_ok) {
1781  		if (tp->lost_out) {
      			printk(KERN_DEBUG "Leak l=%u %d\n", tp->lost_out, tp->ca_state);
      			tp->lost_out = 0;
      		}
1785  		if (tp->sacked_out) {
      			printk(KERN_DEBUG "Leak s=%u %d\n", tp->sacked_out, tp->ca_state);
      			tp->sacked_out = 0;
      		}
1789  		if (tp->retrans_out) {
      			printk(KERN_DEBUG "Leak r=%u %d\n", tp->retrans_out, tp->ca_state);
      			tp->retrans_out = 0;
      		}
      	}
      #endif
1795  	return acked;
      }
      
1798  static void tcp_ack_probe(struct sock *sk)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      
      	/* Was it a usable window open? */
      
1804  	if (!after(TCP_SKB_CB(tp->send_head)->end_seq, tp->snd_una + tp->snd_wnd)) {
      		tp->backoff = 0;
      		tcp_clear_xmit_timer(sk, TCP_TIME_PROBE0);
      		/* Socket must be waked up by subsequent tcp_data_snd_check().
      		 * This function is not for random using!
      		 */
1810  	} else {
      		tcp_reset_xmit_timer(sk, TCP_TIME_PROBE0,
      				     min(tp->rto << tp->backoff, TCP_RTO_MAX));
      	}
      }
      
1816  static __inline__ int tcp_ack_is_dubious(struct tcp_opt *tp, int flag)
      {
      	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
1819  		tp->ca_state != TCP_CA_Open);
      }
      
1822  static __inline__ int tcp_may_raise_cwnd(struct tcp_opt *tp, int flag)
      {
      	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
1825  		!((1<<tp->ca_state)&(TCPF_CA_Recovery|TCPF_CA_CWR));
      }
      
      /* Check that window update is acceptable.
       * The function assumes that snd_una<=ack<=snd_next.
       */
      static __inline__ int
1832  tcp_may_update_window(struct tcp_opt *tp, u32 ack, u32 ack_seq, u32 nwin)
      {
      	return (after(ack, tp->snd_una) ||
      		after(ack_seq, tp->snd_wl1) ||
1836  		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
      }
      
      /* Update our send window.
       *
       * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
       * and in FreeBSD. NetBSD's one is even worse.) is wrong.
       */
1844  static int tcp_ack_update_window(struct sock *sk, struct tcp_opt *tp,
      				 struct sk_buff *skb, u32 ack, u32 ack_seq)
      {
      	int flag = 0;
      	u32 nwin = ntohs(skb->h.th->window) << tp->snd_wscale;
      
1850  	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
      		flag |= FLAG_WIN_UPDATE;
      		tcp_update_wl(tp, ack, ack_seq);
      
1854  		if (tp->snd_wnd != nwin) {
      			tp->snd_wnd = nwin;
      
      			/* Note, it is the only place, where
      			 * fast path is recovered for sending TCP.
      			 */
      			if (skb_queue_len(&tp->out_of_order_queue) == 0 &&
      #ifdef TCP_FORMAL_WINDOW
      			    tcp_receive_window(tp) &&
      #endif
1864  			    !tp->urg_data)
      				tcp_fast_path_on(tp);
      
1867  			if (nwin > tp->max_window) {
      				tp->max_window = nwin;
      				tcp_sync_mss(sk, tp->pmtu_cookie);
      			}
      		}
      	}
      
      	tp->snd_una = ack;
      
      #ifdef TCP_DEBUG
1877  	if (before(tp->snd_una + tp->snd_wnd, tp->snd_nxt)) {
      		if (tp->snd_nxt-(tp->snd_una + tp->snd_wnd) >= (1<<tp->snd_wscale)
1879  		    && net_ratelimit())
      			printk(KERN_DEBUG "TCP: peer %u.%u.%u.%u:%u/%u shrinks window %u:%u:%u. Bad, what else can I say?\n",
      			       NIPQUAD(sk->daddr), htons(sk->dport), sk->num,
      			       tp->snd_una, tp->snd_wnd, tp->snd_nxt);
      	}
      #endif
      
1886  	return flag;
      }
      
      /* This routine deals with incoming acks, but not outgoing ones. */
1890  static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      	u32 prior_snd_una = tp->snd_una;
      	u32 ack_seq = TCP_SKB_CB(skb)->seq;
      	u32 ack = TCP_SKB_CB(skb)->ack_seq;
      	u32 prior_in_flight;
      	int prior_packets;
      
      	/* If the ack is newer than sent or older than previous acks
      	 * then we can probably ignore it.
      	 */
1902  	if (after(ack, tp->snd_nxt))
1903  		goto uninteresting_ack;
      
1905  	if (before(ack, prior_snd_una))
1906  		goto old_ack;
      
1908  	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
      		/* Window is constant, pure forward advance.
      		 * No more checks are required.
      		 * Note, we use the fact that SND.UNA>=SND.WL2.
      		 */
      		tcp_update_wl(tp, ack, ack_seq);
      		tp->snd_una = ack;
      		flag |= FLAG_WIN_UPDATE;
      
      		NET_INC_STATS_BH(TCPHPAcks);
1918  	} else {
1919  		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
      			flag |= FLAG_DATA;
1921  		else
      			NET_INC_STATS_BH(TCPPureAcks);
      
      		flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
      
1926  		if (TCP_SKB_CB(skb)->sacked)
      			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
      
1929  		if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
      			flag |= FLAG_ECE;
      	}
      
      	/* We passed data and got it acked, remove any soft error
      	 * log. Something worked...
      	 */
      	sk->err_soft = 0;
      	tp->rcv_tstamp = tcp_time_stamp;
1938  	if ((prior_packets = tp->packets_out) == 0)
1939  		goto no_queue;
      
      	prior_in_flight = tcp_packets_in_flight(tp);
      
      	/* See if we can take anything off of the retransmit queue. */
      	flag |= tcp_clean_rtx_queue(sk);
      
1946  	if (tcp_ack_is_dubious(tp, flag)) {
      		/* Advanve CWND, if state allows this. */
      		if ((flag&FLAG_DATA_ACKED) && prior_in_flight >= tp->snd_cwnd &&
1949  		    tcp_may_raise_cwnd(tp, flag))
      			tcp_cong_avoid(tp);
      		tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
1952  	} else {
1953  		if ((flag&FLAG_DATA_ACKED) && prior_in_flight >= tp->snd_cwnd)
      			tcp_cong_avoid(tp);
      	}
      
1957  	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
      		dst_confirm(sk->dst_cache);
      
1960  	return 1;
      
      no_queue:
      	tp->probes_out = 0;
      
      	/* If this ack opens up a zero window, clear backoff.  It was
      	 * being used to time the probes, and is probably far higher than
      	 * it needs to be for normal retransmission.
      	 */
1969  	if (tp->send_head)
      		tcp_ack_probe(sk);
1971  	return 1;
      
      old_ack:
1974  	if (TCP_SKB_CB(skb)->sacked)
      		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
      
      uninteresting_ack:
1978  	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
1979  	return 0;
      }
      
      
      /* Look for tcp options. Normally only called on SYN and SYNACK packets.
       * But, this can also be called on packets in the established flow when
       * the fast version below fails.
       */
1987  void tcp_parse_options(struct sk_buff *skb, struct tcp_opt *tp, int estab)
      {
      	unsigned char *ptr;
      	struct tcphdr *th = skb->h.th;
      	int length=(th->doff*4)-sizeof(struct tcphdr);
      
      	ptr = (unsigned char *)(th + 1);
      	tp->saw_tstamp = 0;
      
1996  	while(length>0) {
      	  	int opcode=*ptr++;
      		int opsize;
      
2000  		switch (opcode) {
2001  			case TCPOPT_EOL:
2002  				return;
2003  			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
      				length--;
2005  				continue;
2006  			default:
      				opsize=*ptr++;
2008  				if (opsize < 2) /* "silly options" */
2009  					return;
2010  				if (opsize > length)
2011  					return;	/* don't parse partial options */
2012  	  			switch(opcode) {
2013  				case TCPOPT_MSS:
2014  					if(opsize==TCPOLEN_MSS && th->syn && !estab) {
      						u16 in_mss = ntohs(*(__u16 *)ptr);
2016  						if (in_mss) {
2017  							if (tp->user_mss && tp->user_mss < in_mss)
      								in_mss = tp->user_mss;
      							tp->mss_clamp = in_mss;
      						}
      					}
2022  					break;
2023  				case TCPOPT_WINDOW:
2024  					if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2025  						if (sysctl_tcp_window_scaling) {
      							tp->wscale_ok = 1;
      							tp->snd_wscale = *(__u8 *)ptr;
2028  							if(tp->snd_wscale > 14) {
2029  								if(net_ratelimit())
      									printk("tcp_parse_options: Illegal window "
      									       "scaling value %d >14 received.",
      									       tp->snd_wscale);
      								tp->snd_wscale = 14;
      							}
      						}
2036  					break;
2037  				case TCPOPT_TIMESTAMP:
2038  					if(opsize==TCPOLEN_TIMESTAMP) {
      						if ((estab && tp->tstamp_ok) ||
2040  						    (!estab && sysctl_tcp_timestamps)) {
      							tp->saw_tstamp = 1;
      							tp->rcv_tsval = ntohl(*(__u32 *)ptr);
      							tp->rcv_tsecr = ntohl(*(__u32 *)(ptr+4));
      						}
      					}
2046  					break;
2047  				case TCPOPT_SACK_PERM:
2048  					if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2049  						if (sysctl_tcp_sack) {
      							tp->sack_ok = 1;
      							tcp_sack_reset(tp);
      						}
      					}
2054  					break;
      
2056  				case TCPOPT_SACK:
      					if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
      					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2059  					   tp->sack_ok) {
      						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
      					}
      	  			};
      	  			ptr+=opsize-2;
      	  			length-=opsize;
      	  	};
      	}
      }
      
      /* Fast parse options. This hopes to only see timestamps.
       * If it is wrong it falls back on tcp_parse_options().
       */
2072  static __inline__ int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, struct tcp_opt *tp)
      {
2074  	if (th->doff == sizeof(struct tcphdr)>>2) {
      		tp->saw_tstamp = 0;
2076  		return 0;
      	} else if (tp->tstamp_ok &&
2078  		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
      		__u32 *ptr = (__u32 *)(th + 1);
      		if (*ptr == __constant_ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2081  					     | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
      			tp->saw_tstamp = 1;
      			++ptr;
      			tp->rcv_tsval = ntohl(*ptr);
      			++ptr;
      			tp->rcv_tsecr = ntohl(*ptr);
2087  			return 1;
      		}
      	}
      	tcp_parse_options(skb, tp, 1);
2091  	return 1;
      }
      
      extern __inline__ void
2095  tcp_store_ts_recent(struct tcp_opt *tp)
      {
      	tp->ts_recent = tp->rcv_tsval;
      	tp->ts_recent_stamp = xtime.tv_sec;
      }
      
      extern __inline__ void
2102  tcp_replace_ts_recent(struct tcp_opt *tp, u32 seq)
      {
2104  	if (tp->saw_tstamp && !after(seq, tp->rcv_wup)) {
      		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
      		 * extra check below makes sure this can only happen
      		 * for pure ACK frames.  -DaveM
      		 *
      		 * Not only, also it occurs for expired timestamps.
      		 */
      
      		if((s32)(tp->rcv_tsval - tp->ts_recent) >= 0 ||
2113  		   xtime.tv_sec >= tp->ts_recent_stamp + TCP_PAWS_24DAYS)
      			tcp_store_ts_recent(tp);
      	}
      }
      
      /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
       *
       * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
       * it can pass through stack. So, the following predicate verifies that
       * this segment is not used for anything but congestion avoidance or
       * fast retransmit. Moreover, we even are able to eliminate most of such
       * second order effects, if we apply some small "replay" window (~RTO)
       * to timestamp space.
       *
       * All these measures still do not guarantee that we reject wrapped ACKs
       * on networks with high bandwidth, when sequence space is recycled fastly,
       * but it guarantees that such events will be very rare and do not affect
       * connection seriously. This doesn't look nice, but alas, PAWS is really
       * buggy extension.
       *
       * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
       * states that events when retransmit arrives after original data are rare.
       * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
       * the biggest problem on large power networks even with minor reordering.
       * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
       * up to bandwidth of 18Gigabit/sec. 8) ]
       */
      
2141  static int tcp_disordered_ack(struct tcp_opt *tp, struct sk_buff *skb)
      {
      	struct tcphdr *th = skb->h.th;
      	u32 seq = TCP_SKB_CB(skb)->seq;
      	u32 ack = TCP_SKB_CB(skb)->ack_seq;
      
      	return (/* 1. Pure ACK with correct sequence number. */
      		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
      
      		/* 2. ... and duplicate ACK. */
      		ack == tp->snd_una &&
      
      		/* 3. ... and does not update window. */
      		!tcp_may_update_window(tp, ack, seq, ntohs(th->window)<<tp->snd_wscale) &&
      
      		/* 4. ... and sits in replay window. */
2157  		(s32)(tp->ts_recent - tp->rcv_tsval) <= (tp->rto*1024)/HZ);
      }
      
2160  extern __inline__ int tcp_paws_discard(struct tcp_opt *tp, struct sk_buff *skb)
      {
      	return ((s32)(tp->ts_recent - tp->rcv_tsval) > TCP_PAWS_WINDOW &&
      		xtime.tv_sec < tp->ts_recent_stamp + TCP_PAWS_24DAYS &&
2164  		!tcp_disordered_ack(tp, skb));
      }
      
2167  static int __tcp_sequence(struct tcp_opt *tp, u32 seq, u32 end_seq)
      {
      	u32 end_window = tp->rcv_wup + tp->rcv_wnd;
      #ifdef TCP_FORMAL_WINDOW
      	u32 rcv_wnd = tcp_receive_window(tp);
      #else
      	u32 rcv_wnd = tp->rcv_wnd;
      #endif
      
      	if (rcv_wnd &&
      	    after(end_seq, tp->rcv_nxt) &&
2178  	    before(seq, end_window))
2179  		return 1;
2180  	if (seq != end_window)
2181  		return 0;
2182  	return (seq == end_seq);
      }
      
      /* This functions checks to see if the tcp header is actually acceptable.
       *
       * Actually, our check is seriously broken, we must accept RST,ACK,URG
       * even on zero window effectively trimming data. It is RFC, guys.
       * But our check is so beautiful, that I do not want to repair it
       * now. However, taking into account those stupid plans to start to
       * send some texts with RST, we have to handle at least this case. --ANK
       */
2193  extern __inline__ int tcp_sequence(struct tcp_opt *tp, u32 seq, u32 end_seq, int rst)
      {
      #ifdef TCP_FORMAL_WINDOW
      	u32 rcv_wnd = tcp_receive_window(tp);
      #else
      	u32 rcv_wnd = tp->rcv_wnd;
      #endif
2200  	if (seq == tp->rcv_nxt)
2201  		return (rcv_wnd || (end_seq == seq) || rst);
      
2203  	return __tcp_sequence(tp, seq, end_seq);
      }
      
      /* When we get a reset we do this. */
2207  static void tcp_reset(struct sock *sk)
      {
      	/* We want the right error as BSD sees it (and indeed as we do). */
2210  	switch (sk->state) {
2211  		case TCP_SYN_SENT:
      			sk->err = ECONNREFUSED;
2213  			break;
2214  		case TCP_CLOSE_WAIT:
      			sk->err = EPIPE;
2216  			break;
2217  		case TCP_CLOSE:
2218  			return;
2219  		default:
      			sk->err = ECONNRESET;
      	}
      
2223  	if (!sk->dead)
      		sk->error_report(sk);
      
      	tcp_done(sk);
      }
      
      /*
       * 	Process the FIN bit. This now behaves as it is supposed to work
       *	and the FIN takes effect when it is validly part of sequence
       *	space. Not before when we get holes.
       *
       *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
       *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
       *	TIME-WAIT)
       *
       *	If we are in FINWAIT-1, a received FIN indicates simultaneous
       *	close and we go into CLOSING (and later onto TIME-WAIT)
       *
       *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
       */
2243  static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      
      	tp->fin_seq = TCP_SKB_CB(skb)->end_seq;
      	tcp_schedule_ack(tp);
      
      	sk->shutdown |= RCV_SHUTDOWN;
      	sk->done = 1;
      
2253  	switch(sk->state) {
2254  		case TCP_SYN_RECV:
2255  		case TCP_ESTABLISHED:
      			/* Move to CLOSE_WAIT */
      			tcp_set_state(sk, TCP_CLOSE_WAIT);
      			tp->ack.pingpong = 1;
2259  			break;
      
2261  		case TCP_CLOSE_WAIT:
2262  		case TCP_CLOSING:
      			/* Received a retransmission of the FIN, do
      			 * nothing.
      			 */
2266  			break;
2267  		case TCP_LAST_ACK:
      			/* RFC793: Remain in the LAST-ACK state. */
2269  			break;
      
2271  		case TCP_FIN_WAIT1:
      			/* This case occurs when a simultaneous close
      			 * happens, we must ack the received FIN and
      			 * enter the CLOSING state.
      			 */
      			tcp_send_ack(sk);
      			tcp_set_state(sk, TCP_CLOSING);
2278  			break;
2279  		case TCP_FIN_WAIT2:
      			/* Received a FIN -- send ACK and enter TIME_WAIT. */
      			tcp_send_ack(sk);
      			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2283  			break;
2284  		default:
      			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
      			 * cases we should never reach this piece of code.
      			 */
      			printk("tcp_fin: Impossible, sk->state=%d\n", sk->state);
2289  			break;
      	};
      
      	/* It _is_ possible, that we have something out-of-order _after_ FIN.
      	 * Probably, we should reset in this case. For now drop them.
      	 */
      	__skb_queue_purge(&tp->out_of_order_queue);
2296  	if (tp->sack_ok)
      		tcp_sack_reset(tp);
      	tcp_mem_reclaim(sk);
      
2300  	if (!sk->dead) {
      		sk->state_change(sk);
      
      		/* Do not send POLL_HUP for half duplex close. */
2304  		if (sk->shutdown == SHUTDOWN_MASK || sk->state == TCP_CLOSE)
      			sk_wake_async(sk, 1, POLL_HUP);
2306  		else
      			sk_wake_async(sk, 1, POLL_IN);
      	}
      }
      
      static __inline__ int
2312  tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
      {
2314  	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2315  		if (before(seq, sp->start_seq))
      			sp->start_seq = seq;
2317  		if (after(end_seq, sp->end_seq))
      			sp->end_seq = end_seq;
2319  		return 1;
      	}
2321  	return 0;
      }
      
2324  static __inline__ void tcp_dsack_set(struct tcp_opt *tp, u32 seq, u32 end_seq)
      {
2326  	if (tp->sack_ok && sysctl_tcp_dsack) {
2327  		if (before(seq, tp->rcv_nxt))
      			NET_INC_STATS_BH(TCPDSACKOldSent);
2329  		else
      			NET_INC_STATS_BH(TCPDSACKOfoSent);
      
      		tp->dsack = 1;
      		tp->duplicate_sack[0].start_seq = seq;
      		tp->duplicate_sack[0].end_seq = end_seq;
      		tp->eff_sacks = min(tp->num_sacks+1, 4-tp->tstamp_ok);
      	}
      }
      
2339  static __inline__ void tcp_dsack_extend(struct tcp_opt *tp, u32 seq, u32 end_seq)
      {
2341  	if (!tp->dsack)
      		tcp_dsack_set(tp, seq, end_seq);
2343  	else
      		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
      }
      
2347  static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      
      	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2352  	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
      		NET_INC_STATS_BH(DelayedACKLost);
      		tcp_enter_quickack_mode(tp);
      
2356  		if (tp->sack_ok && sysctl_tcp_dsack) {
      			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
      
2359  			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
      				end_seq = tp->rcv_nxt;
      			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
      		}
      	}
      
      	tcp_send_ack(sk);
      }
      
      /* These routines update the SACK block as out-of-order packets arrive or
       * in-order packets close up the sequence space.
       */
2371  static void tcp_sack_maybe_coalesce(struct tcp_opt *tp)
      {
      	int this_sack;
      	struct tcp_sack_block *sp = &tp->selective_acks[0];
      	struct tcp_sack_block *swalk = sp+1;
      
      	/* See if the recent change to the first SACK eats into
      	 * or hits the sequence space of other SACK blocks, if so coalesce.
      	 */
2380  	for (this_sack = 1; this_sack < tp->num_sacks; ) {
2381  		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
      			int i;
      
      			/* Zap SWALK, by moving every further SACK up by one slot.
      			 * Decrease num_sacks.
      			 */
      			tp->num_sacks--;
      			tp->eff_sacks = min(tp->num_sacks+tp->dsack, 4-tp->tstamp_ok);
2389  			for(i=this_sack; i < tp->num_sacks; i++)
      				sp[i] = sp[i+1];
2391  			continue;
      		}
      		this_sack++, swalk++;
      	}
      }
      
2397  static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
      {
      	__u32 tmp;
      
      	tmp = sack1->start_seq;
      	sack1->start_seq = sack2->start_seq;
      	sack2->start_seq = tmp;
      
      	tmp = sack1->end_seq;
      	sack1->end_seq = sack2->end_seq;
      	sack2->end_seq = tmp;
      }
      
2410  static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      	struct tcp_sack_block *sp = &tp->selective_acks[0];
      	int cur_sacks = tp->num_sacks;
      	int this_sack;
      
2417  	if (!cur_sacks)
2418  		goto new_sack;
      
2420  	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
2421  		if (tcp_sack_extend(sp, seq, end_seq)) {
      			/* Rotate this_sack to the first one. */
2423  			for (; this_sack>0; this_sack--, sp--)
      				tcp_sack_swap(sp, sp-1);
2425  			if (cur_sacks > 1)
      				tcp_sack_maybe_coalesce(tp);
2427  			return;
      		}
      	}
      
      	/* Could not find an adjacent existing SACK, build a new one,
      	 * put it at the front, and shift everyone else down.  We
      	 * always know there is at least one SACK present already here.
      	 *
      	 * If the sack array is full, forget about the last one.
      	 */
2437  	if (this_sack >= 4) {
      		this_sack--;
      		tp->num_sacks--;
      		sp--;
      	}
2442  	for(; this_sack > 0; this_sack--, sp--)
      		*sp = *(sp-1);
      
      new_sack:
      	/* Build the new head SACK, and we're done. */
      	sp->start_seq = seq;
      	sp->end_seq = end_seq;
      	tp->num_sacks++;
      	tp->eff_sacks = min(tp->num_sacks+tp->dsack, 4-tp->tstamp_ok);
      }
      
      /* RCV.NXT advances, some SACKs should be eaten. */
      
2455  static void tcp_sack_remove(struct tcp_opt *tp)
      {
      	struct tcp_sack_block *sp = &tp->selective_acks[0];
      	int num_sacks = tp->num_sacks;
      	int this_sack;
      
      	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
2462  	if (skb_queue_len(&tp->out_of_order_queue) == 0) {
      		tp->num_sacks = 0;
      		tp->eff_sacks = tp->dsack;
2465  		return;
      	}
      
2468  	for(this_sack = 0; this_sack < num_sacks; ) {
      		/* Check if the start of the sack is covered by RCV.NXT. */
2470  		if (!before(tp->rcv_nxt, sp->start_seq)) {
      			int i;
      
      			/* RCV.NXT must cover all the block! */
2474  			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
      
      			/* Zap this SACK, by moving forward any other SACKS. */
2477  			for (i=this_sack+1; i < num_sacks; i++)
      				sp[i-1] = sp[i];
      			num_sacks--;
2480  			continue;
      		}
      		this_sack++;
      		sp++;
      	}
2485  	if (num_sacks != tp->num_sacks) {
      		tp->num_sacks = num_sacks;
      		tp->eff_sacks = min(tp->num_sacks+tp->dsack, 4-tp->tstamp_ok);
      	}
      }
      
      /* This one checks to see if we can put data from the
       * out_of_order queue into the receive_queue.
       */
2494  static void tcp_ofo_queue(struct sock *sk)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      	__u32 dsack_high = tp->rcv_nxt;
      	struct sk_buff *skb;
      
2500  	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
2501  		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
2502  			break;
      
2504  		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
      			__u32 dsack = dsack_high;
2506  			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
      				dsack_high = TCP_SKB_CB(skb)->end_seq;
      			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
      		}
      
2511  		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
2512  			SOCK_DEBUG(sk, "ofo packet was already received \n");
      			__skb_unlink(skb, skb->list);
      			__kfree_skb(skb);
2515  			continue;
      		}
2517  		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
      			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
2519  			   TCP_SKB_CB(skb)->end_seq);
      
      		__skb_unlink(skb, skb->list);
      		__skb_queue_tail(&sk->receive_queue, skb);
      		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2524  		if(skb->h.th->fin)
      			tcp_fin(skb, sk, skb->h.th);
      	}
      }
      
2529  static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      	int eaten = 0;
      
2534  	if (tp->dsack) {
      		tp->dsack = 0;
      		tp->eff_sacks = min(tp->num_sacks, 4-tp->tstamp_ok);
      	}
      
      	/*  Queue data for delivery to the user.
      	 *  Packets in sequence go to the receive queue.
      	 *  Out of sequence packets to the out_of_order_queue.
      	 */
2543  	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
      		/* Ok. In sequence. */
      		if (tp->ucopy.task == current &&
      		    tp->copied_seq == tp->rcv_nxt &&
      		    tp->ucopy.len &&
      		    sk->lock.users &&
2549  		    !tp->urg_data) {
      			int chunk = min(skb->len, tp->ucopy.len);
      
2552  			__set_current_state(TASK_RUNNING);
      
2554  			local_bh_enable();
2555  			if (memcpy_toiovec(tp->ucopy.iov, skb->data, chunk)) {
      				sk->err = EFAULT;
      				sk->error_report(sk);
      			}
2559  			local_bh_disable();
      			tp->ucopy.len -= chunk;
      			tp->copied_seq += chunk;
      			eaten = (chunk == skb->len && !skb->h.th->fin);
      		}
      
2565  		if (!eaten) {
      queue_and_out:
      			tcp_set_owner_r(skb, sk);
      			__skb_queue_tail(&sk->receive_queue, skb);
      		}
      		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2571  		if(skb->len)
      			tcp_event_data_recv(sk, tp, skb);
2573  		if(skb->h.th->fin)
      			tcp_fin(skb, sk, skb->h.th);
      
2576  		if (skb_queue_len(&tp->out_of_order_queue)) {
      			tcp_ofo_queue(sk);
      
      			/* RFC2581. 4.2. SHOULD send immediate ACK, when
      			 * gap in queue is filled.
      			 */
2582  			if (skb_queue_len(&tp->out_of_order_queue) == 0)
      				tp->ack.pingpong = 0;
      		}
      
2586  		if(tp->num_sacks)
      			tcp_sack_remove(tp);
      
      		/* Turn on fast path. */ 
      		if (skb_queue_len(&tp->out_of_order_queue) == 0 &&
      #ifdef TCP_FORMAL_WINDOW
      		    tcp_receive_window(tp) &&
      #endif
2594  		    !tp->urg_data)
      			tcp_fast_path_on(tp);
      
2597  		if (eaten) {
      			__kfree_skb(skb);
2599  		} else if (!sk->dead)
      			sk->data_ready(sk, 0);
2601  		return;
      	}
      
      #ifdef TCP_DEBUG
      	/* An old packet, either a retransmit or some packet got lost. */
2606  	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
      		/* A retransmit, 2nd most common case.  Force an imediate ack.
      		 * 
      		 * It is impossible, seq is checked by top level.
      		 */
      		printk("BUG: retransmit in tcp_data_queue: seq %X\n", TCP_SKB_CB(skb)->seq);
      		tcp_enter_quickack_mode(tp);
      		tcp_schedule_ack(tp);
      		__kfree_skb(skb);
2615  		return;
      	}
      #endif
      
      	tcp_enter_quickack_mode(tp);
      
2621  	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
      		/* Partial packet, seq < rcv_next < end_seq */
2623  		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
      			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
2625  			   TCP_SKB_CB(skb)->end_seq);
      
      		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
2628  		goto queue_and_out;
      	}
      
2631  	TCP_ECN_check_ce(tp, skb);
      
      	/* Disable header prediction. */
      	tp->pred_flags = 0;
      	tcp_schedule_ack(tp);
      
2637  	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
2638  		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
      
      	tcp_set_owner_r(skb, sk);
      
2642  	if (skb_peek(&tp->out_of_order_queue) == NULL) {
      		/* Initial out of order segment, build 1 SACK. */
2644  		if(tp->sack_ok) {
      			tp->num_sacks = 1;
      			tp->dsack = 0;
      			tp->eff_sacks = 1;
      			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
      			tp->selective_acks[0].end_seq = TCP_SKB_CB(skb)->end_seq;
      		}
      		__skb_queue_head(&tp->out_of_order_queue,skb);
2652  	} else {
      		struct sk_buff *skb1=tp->out_of_order_queue.prev;
      		u32 seq = TCP_SKB_CB(skb)->seq;
      		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
      
2657  		if (seq == TCP_SKB_CB(skb1)->end_seq) {
      			__skb_append(skb1, skb);
      
      			if (tp->num_sacks == 0 ||
2661  			    tp->selective_acks[0].end_seq != seq)
2662  				goto add_sack;
      
      			/* Common case: data arrive in order after hole. */
      			tp->selective_acks[0].end_seq = end_seq;
2666  			return;
      		}
      
      		/* Find place to insert this segment. */
2670  		do {
2671  			if (!after(TCP_SKB_CB(skb1)->seq, seq))
2672  				break;
2673  		} while ((skb1=skb1->prev) != (struct sk_buff*)&tp->out_of_order_queue);
      
      		/* Do skb overlap to previous one? */
      		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
2677  		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
2678  			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
      				/* All the bits are present. Drop. */
      				__kfree_skb(skb);
      				tcp_dsack_set(tp, seq, end_seq);
2682  				goto add_sack;
      			}
2684  			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
      				/* Partial overlap. */
      				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
2687  			} else {
      				skb1 = skb1->prev;
      			}
      		}
      		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
      		
      		/* And clean segments covered by new one as whole. */
      		while ((skb1 = skb->next) != (struct sk_buff*)&tp->out_of_order_queue &&
2695  		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
2696  		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
      			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
2698  			       break;
      		       }
      		       __skb_unlink(skb1, skb1->list);
      		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
      		       __kfree_skb(skb1);
      		}
      
      add_sack:
2706  		if (tp->sack_ok)
      			tcp_sack_new_ofo_skb(sk, seq, end_seq);
      	}
      }
      
      
2712  static void tcp_collapse_queue(struct sock *sk, struct sk_buff_head *q)
      {
      	struct sk_buff *skb = skb_peek(q);
      	struct sk_buff *skb_next;
      
      	while (skb &&
      	       skb != (struct sk_buff *)q &&
2719  	       (skb_next = skb->next) != (struct sk_buff *)q) {
      		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
      		struct tcp_skb_cb *scb_next = TCP_SKB_CB(skb_next);
      
      		if (scb->end_seq == scb_next->seq &&
      		    skb_tailroom(skb) >= skb_next->len &&
      #define TCP_DONT_COLLAPSE (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN)
      		    !(tcp_flag_word(skb->h.th)&TCP_DONT_COLLAPSE) &&
2727  		    !(tcp_flag_word(skb_next->h.th)&TCP_DONT_COLLAPSE)) {
      			/* OK to collapse two skbs to one */
      			memcpy(skb_put(skb, skb_next->len), skb_next->data, skb_next->len);
      			__skb_unlink(skb_next, skb_next->list);
      			scb->end_seq = scb_next->end_seq;
      			__kfree_skb(skb_next);
      			NET_INC_STATS_BH(TCPRcvCollapsed);
2734  		} else {
      			/* Lots of spare tailroom, reallocate this skb to trim it. */
      			if (tcp_win_from_space(skb->truesize) > skb->len &&
2737  			    skb_tailroom(skb) > sizeof(struct sk_buff) + 16) {
      				struct sk_buff *nskb;
      
      				nskb = skb_copy_expand(skb, skb_headroom(skb), 0, GFP_ATOMIC);
2741  				if (nskb) {
      					tcp_set_owner_r(nskb, sk);
      					memcpy(nskb->data-skb_headroom(skb),
      					       skb->data-skb_headroom(skb),
      					       skb_headroom(skb));
      					__skb_append(skb, nskb);
      					__skb_unlink(skb, skb->list);
      					__kfree_skb(skb);
      				}
      			}
      			skb = skb_next;
      		}
      	}
      }
      
      /* Clean the out_of_order queue if we can, trying to get
       * the socket within its memory limits again.
       *
       * Return less than zero if we should start dropping frames
       * until the socket owning process reads some of the data
       * to stabilize the situation.
       */
2763  static int tcp_prune_queue(struct sock *sk)
      {
      	struct tcp_opt *tp = &sk->tp_pinfo.af_tcp; 
      
2767  	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
      
      	NET_INC_STATS_BH(PruneCalled);
      
2771  	if (atomic_read(&sk->rmem_alloc) >= sk->rcvbuf)
      		tcp_clamp_window(sk, tp);
2773  	else if (tcp_memory_pressure)
      		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4*tp->advmss);
      
      	tcp_collapse_queue(sk, &sk->receive_queue);
      	tcp_collapse_queue(sk, &tp->out_of_order_queue);
      	tcp_mem_reclaim(sk);
      
2780  	if (atomic_read(&sk->rmem_alloc) <= sk->rcvbuf)
2781  		return 0;
      
      	/* Collapsing did not help, destructive actions follow.
      	 * This must not ever occur. */
      
      	/* First, purge the out_of_order queue. */
2787  	if (skb_queue_len(&tp->out_of_order_queue)) {
      		net_statistics[smp_processor_id()*2].OfoPruned += skb_queue_len(&tp->out_of_order_queue);
      		__skb_queue_purge(&tp->out_of_order_queue);
      
      		/* Reset SACK state.  A conforming SACK implementation will
      		 * do the same at a timeout based retransmit.  When a connection
      		 * is in a sad state like this, we care only about integrity
      		 * of the connection not performance.
      		 */
2796  		if(tp->sack_ok)
      			tcp_sack_reset(tp);
      		tcp_mem_reclaim(sk);
      	}
      
2801  	if(atomic_read(&sk->rmem_alloc) <= sk->rcvbuf)
2802  		return 0;
      
      	/* If we are really being abused, tell the caller to silently
      	 * drop receive data on the floor.  It will get retransmitted
      	 * and hopefully then we'll have sufficient space.
      	 */
      	NET_INC_STATS_BH(RcvPruned);
      
      	/* Massive buffer overcommit. */
2811  	return -1;
      }
      
2814  static inline int tcp_rmem_schedule(struct sock *sk, struct sk_buff *skb)
      {
      	return (int)skb->truesize <= sk->forward_alloc ||
2817  		tcp_mem_schedule(sk, skb->truesize, 1);
      }
      
      /*
       *	This routine handles the data.  If there is room in the buffer,
       *	it will be have already been moved into it.  If there is no
       *	room, then we will just have to discard the packet.
       */
      
2826  static void tcp_data(struct sk_buff *skb, struct sock *sk, unsigned int len)
      {
      	struct tcphdr *th;
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      
      	th = skb->h.th;
      	skb_pull(skb, th->doff*4);
      	skb_trim(skb, len - (th->doff*4));
      
2835          if (skb->len == 0 && !th->fin)
2836  		goto drop;
      
2838  	TCP_ECN_accept_cwr(tp, skb);
      
      	/* 
      	 *	If our receive queue has grown past its limits shrink it.
      	 *	Make sure to do this before moving rcv_nxt, otherwise
      	 *	data might be acked for that we don't have enough room.
      	 */
      	if (atomic_read(&sk->rmem_alloc) > sk->rcvbuf ||
2846  	    !tcp_rmem_schedule(sk, skb)) {
2847  		if (tcp_prune_queue(sk) < 0 || !tcp_rmem_schedule(sk, skb))
2848  			goto drop;
      	}
      
      	tcp_data_queue(sk, skb);
      
      #ifdef TCP_DEBUG
2854  	if (before(tp->rcv_nxt, tp->copied_seq)) {
      		printk(KERN_DEBUG "*** tcp.c:tcp_data bug acked < copied\n");
      		tp->rcv_nxt = tp->copied_seq;
      	}
      #endif
2859  	return;
      
      drop:
      	__kfree_skb(skb);
      }
      
      /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
       * As additional protections, we do not touch cwnd in retransmission phases,
       * and if application hit its sndbuf limit recently.
       */
2869  void tcp_cwnd_application_limited(struct sock *sk)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      
      	if (tp->ca_state == TCP_CA_Open &&
2874  	    sk->socket && !test_bit(SOCK_NOSPACE, &sk->socket->flags)) {
      		/* Limited by application or receiver window. */
      		u32 win_used = max(tp->snd_cwnd_used, 2);
2877  		if (win_used < tp->snd_cwnd) {
      			tp->snd_ssthresh = tcp_current_ssthresh(tp);
      			tp->snd_cwnd = (tp->snd_cwnd+win_used)>>1;
      		}
      		tp->snd_cwnd_used = 0;
      	}
      	tp->snd_cwnd_stamp = tcp_time_stamp;
      }
      
      
      /* When incoming ACK allowed to free some skb from write_queue,
       * we remember this event in flag tp->queue_shrunk and wake up socket
       * on the exit from tcp input handler.
       */
2891  static void tcp_new_space(struct sock *sk)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      
      	if (tp->packets_out < tp->snd_cwnd &&
      	    !(sk->userlocks&SOCK_SNDBUF_LOCK) &&
      	    !tcp_memory_pressure &&
2898  	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
      		int sndmem, demanded;
      
      		sndmem = tp->mss_clamp+MAX_TCP_HEADER+16+sizeof(struct sk_buff);
      		demanded = max(tp->snd_cwnd, tp->reordering+1);
      		sndmem *= 2*demanded;
2904  		if (sndmem > sk->sndbuf)
      			sk->sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
      		tp->snd_cwnd_stamp = tcp_time_stamp;
      	}
      
      	/* Wakeup users. */
2910  	if (tcp_wspace(sk) >= tcp_min_write_space(sk)) {
      		struct socket *sock = sk->socket;
      
      		clear_bit(SOCK_NOSPACE, &sock->flags);
      
2915  		if (sk->sleep && waitqueue_active(sk->sleep))
      			wake_up_interruptible(sk->sleep);
      
2918  		if (sock->fasync_list && !(sk->shutdown&SEND_SHUTDOWN))
      			sock_wake_async(sock, 2, POLL_OUT);
      
      		/* Satisfy those who hook write_space() callback. */
2922  		if (sk->write_space != tcp_write_space)
      			sk->write_space(sk);
      	}
      }
      
2927  static inline void tcp_check_space(struct sock *sk)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      
2931  	if (tp->queue_shrunk) {
      		tp->queue_shrunk = 0;
2933  		if (sk->socket && test_bit(SOCK_NOSPACE, &sk->socket->flags))
      			tcp_new_space(sk);
      	}
      }
      
2938  static void __tcp_data_snd_check(struct sock *sk, struct sk_buff *skb)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      
      	if (after(TCP_SKB_CB(skb)->end_seq, tp->snd_una + tp->snd_wnd) ||
      	    tcp_packets_in_flight(tp) >= tp->snd_cwnd ||
2944  	    tcp_write_xmit(sk))
      		tcp_check_probe_timer(sk, tp);
      }
      
2948  static __inline__ void tcp_data_snd_check(struct sock *sk)
      {
      	struct sk_buff *skb = sk->tp_pinfo.af_tcp.send_head;
      
2952  	if (skb != NULL)
      		__tcp_data_snd_check(sk, skb);
      	tcp_check_space(sk);
      }
      
      /*
       * Check if sending an ack is needed.
       */
2960  static __inline__ void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      
      	    /* More than one full frame received... */
      	if (((tp->rcv_nxt - tp->rcv_wup) > tp->ack.rcv_mss
      	     /* ... and right edge of window advances far enough.
      	      * (tcp_recvmsg() will send ACK otherwise). Or...
      	      */
      	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
      	    /* We ACK each frame or... */
      	    tcp_in_quickack_mode(tp) ||
      	    /* We have out of order data. */
      	    (ofo_possible &&
2974  	     skb_peek(&tp->out_of_order_queue) != NULL)) {
      		/* Then ack it now */
      		tcp_send_ack(sk);
2977  	} else {
      		/* Else, send delayed ack. */
      		tcp_send_delayed_ack(sk);
      	}
      }
      
2983  static __inline__ void tcp_ack_snd_check(struct sock *sk)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
2986  	if (!tcp_ack_scheduled(tp)) {
      		/* We sent a data segment already. */
2988  		return;
      	}
      	__tcp_ack_snd_check(sk, 1);
      }
      
      /*
       *	This routine is only called when we have urgent data
       *	signalled. Its the 'slow' part of tcp_urg. It could be
       *	moved inline now as tcp_urg is only called from one
       *	place. We handle URGent data wrong. We have to - as
       *	BSD still doesn't use the correction from RFC961.
       *	For 1003.1g we should support a new option TCP_STDURG to permit
       *	either form (or just set the sysctl tcp_stdurg).
       */
       
3003  static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      	u32 ptr = ntohs(th->urg_ptr);
      
3008  	if (ptr && !sysctl_tcp_stdurg)
      		ptr--;
      	ptr += ntohl(th->seq);
      
      	/* Ignore urgent data that we've already seen and read. */
3013  	if (after(tp->copied_seq, ptr))
3014  		return;
      
      	/* Do we already have a newer (or duplicate) urgent pointer? */
3017  	if (tp->urg_data && !after(ptr, tp->urg_seq))
3018  		return;
      
      	/* Tell the world about our new urgent pointer. */
3021  	if (sk->proc != 0) {
3022  		if (sk->proc > 0)
      			kill_proc(sk->proc, SIGURG, 1);
3024  		else
      			kill_pg(-sk->proc, SIGURG, 1);
      		sk_wake_async(sk, 3, POLL_PRI);
      	}
      
      	/* We may be adding urgent data when the last byte read was
      	 * urgent. To do this requires some care. We cannot just ignore
      	 * tp->copied_seq since we would read the last urgent byte again
      	 * as data, nor can we alter copied_seq until this data arrives
      	 * or we break the sematics of SIOCATMARK (and thus sockatmark())
      	 */
3035  	if (tp->urg_seq == tp->copied_seq)
      		tp->copied_seq++;	/* Move the copied sequence on correctly */
      	tp->urg_data = TCP_URG_NOTYET;
      	tp->urg_seq = ptr;
      
      	/* Disable header prediction. */
      	tp->pred_flags = 0;
      }
      
      /* This is the 'fast' part of urgent handling. */
3045  static inline void tcp_urg(struct sock *sk, struct tcphdr *th, unsigned long len)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      
      	/* Check if we get a new urgent pointer - normally not. */
3050  	if (th->urg)
      		tcp_check_urg(sk,th);
      
      	/* Do we wait for any urgent data? - normally not... */
3054  	if (tp->urg_data == TCP_URG_NOTYET) {
      		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff*4);
      
      		/* Is the urgent pointer pointing into this packet? */	 
3058  		if (ptr < len) {
      			tp->urg_data = TCP_URG_VALID | *(ptr + (unsigned char *) th);
3060  			if (!sk->dead)
      				sk->data_ready(sk,0);
      		}
      	}
      }
      
3066  static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      	int chunk = skb->len - hlen;
      	int err;
      
3072  	local_bh_enable();
3073  	if (skb->ip_summed==CHECKSUM_UNNECESSARY)
      		err = memcpy_toiovec(tp->ucopy.iov, skb->h.raw + hlen, chunk);
3075  	else
      		err = copy_and_csum_toiovec(tp->ucopy.iov, skb, hlen);
      
3078  	if (!err) {
      update:
      		tp->ucopy.len -= chunk;
      		tp->copied_seq += chunk;
3082  		local_bh_disable();
3083  		return 0;
      	}
      
3086  	if (err == -EFAULT) {
      		sk->err = EFAULT;
      		sk->error_report(sk);
3089  		goto update;
      	}
      
3092  	local_bh_disable();
3093  	return err;
      }
      
3096  static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
      {
      	int result;
      
3100  	if (sk->lock.users) {
3101  		local_bh_enable();
      		result = __tcp_checksum_complete(skb);
3103  		local_bh_disable();
3104  	} else {
      		result = __tcp_checksum_complete(skb);
      	}
3107  	return result;
      }
      
      static __inline__ int
3111  tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
      {
      	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3114  		__tcp_checksum_complete_user(sk, skb);
      }
      
      /*
       *	TCP receive function for the ESTABLISHED state. 
       *
       *	It is split into a fast path and a slow path. The fast path is 
       * 	disabled when:
       *	- A zero window was announced from us - zero window probing
       *        is only handled properly in the slow path. 
       *	  [ NOTE: actually, it was made incorrectly and nobody ever noticed
       *	    this! Reason is clear: 1. Correct senders do not send
       *	    to zero window. 2. Even if a sender sends to zero window,
       *	    nothing terrible occurs.
       *
       *	    For now I cleaned this and fast path is really always disabled,
       *	    when window is zero, but I would be more happy to remove these
       *	    checks. Code will be only cleaner and _faster_.    --ANK
       *	
       *	    Later note. I've just found that slow path also accepts
       *	    out of window segments, look at tcp_sequence(). So...
       *	    it is the last argument: I repair all and comment out
       *	    repaired code by TCP_FORMAL_WINDOW.
       *	    [ I remember one rhyme from a chidren's book. (I apologize,
       *	      the trasnlation is not rhymed 8)): people in one (jewish) village
       *	      decided to build sauna, but divided to two parties.
       *	      The first one insisted that battens should not be dubbed,
       *	      another objected that foots will suffer of splinters,
       *	      the first fended that dubbed wet battens are too slippy
       *	      and people will fall and it is much more serious!
       *	      Certaiinly, all they went to rabbi.
       *	      After some thinking, he judged: "Do not be lazy!
       *	      Certainly, dub the battens! But put them by dubbed surface down."
       *          ]
       *        ]
       *
       *	- Out of order segments arrived.
       *	- Urgent data is expected.
       *	- There is no buffer space left
       *	- Unexpected TCP flags/window values/header lengths are received
       *	  (detected by checking the TCP header against pred_flags) 
       *	- Data is sent in both directions. Fast path only supports pure senders
       *	  or pure receivers (this means either the sequence number or the ack
       *	  value must stay constant)
       *	- Unexpected TCP option.
       *
       *	When these conditions are not satisfied it drops into a standard 
       *	receive procedure patterned after RFC793 to handle all cases.
       *	The first three cases are guaranteed by proper pred_flags setting,
       *	the rest is checked inline. Fast processing is turned on in 
       *	tcp_data_queue when everything is OK.
       */
3166  int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
      			struct tcphdr *th, unsigned len)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      
      	/*
      	 *	Header prediction.
      	 *	The code losely follows the one in the famous 
      	 *	"30 instruction TCP receive" Van Jacobson mail.
      	 *	
      	 *	Van's trick is to deposit buffers into socket queue 
      	 *	on a device interrupt, to call tcp_recv function
      	 *	on the receive process context and checksum and copy
      	 *	the buffer to user space. smart...
      	 *
      	 *	Our current scheme is not silly either but we take the 
      	 *	extra cost of the net_bh soft interrupt processing...
      	 *	We do checksum and copy also but from device to kernel.
      	 */
      
      	tp->saw_tstamp = 0;
      
      	/*	pred_flags is 0xS?10 << 16 + snd_wnd
      	 *	if header_predition is to be made
      	 *	'S' will always be tp->tcp_header_len >> 2
      	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
      	 *  turn it off	(when there are holes in the receive 
      	 *	 space for instance)
      	 *	PSH flag is ignored.
      	 */
      
      	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3198  		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
      		int tcp_header_len = tp->tcp_header_len;
      
      		/* Timestamp header prediction: tcp_header_len
      		 * is automatically equal to th->doff*4 due to pred_flags
      		 * match.
      		 */
      
      		/* Check timestamp */
3207  		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
      			__u32 *ptr = (__u32 *)(th + 1);
      
      			/* No? Slow path! */
      			if (*ptr != __constant_ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3212  						     | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3213  				goto slow_path;
      
      			tp->saw_tstamp = 1;
      			++ptr; 
      			tp->rcv_tsval = ntohl(*ptr);
      			++ptr;
      			tp->rcv_tsecr = ntohl(*ptr);
      
      			/* If PAWS failed, check it more carefully in slow path */
3222  			if ((s32)(tp->rcv_tsval - tp->ts_recent) < 0)
3223  				goto slow_path;
      
      			/* Predicted packet is in window by definition.
      			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
      			 * Hence, check seq<=rcv_wup reduces to:
      			 */
3229  			if (tp->rcv_nxt == tp->rcv_wup)
      				tcp_store_ts_recent(tp);
      		}
      
3233  		if (len <= tcp_header_len) {
      			/* Bulk data transfer: sender */
3235  			if (len == tcp_header_len) {
      				/* We know that such packets are checksummed
      				 * on entry.
      				 */
      				tcp_ack(sk, skb, 0);
      				__kfree_skb(skb); 
      				tcp_data_snd_check(sk);
3242  				return 0;
3243  			} else { /* Header too small */
      				TCP_INC_STATS_BH(TcpInErrs);
3245  				goto discard;
      			}
3247  		} else {
      			int eaten = 0;
      
      			if (tp->ucopy.task == current &&
      			    tp->copied_seq == tp->rcv_nxt &&
      			    len - tcp_header_len <= tp->ucopy.len &&
3253  			    sk->lock.users) {
      				eaten = 1;
      
      				NET_INC_STATS_BH(TCPHPHitsToUser);
      
3258  				__set_current_state(TASK_RUNNING);
      
3260  				if (tcp_copy_to_iovec(sk, skb, tcp_header_len))
3261  					goto csum_error;
      
      				__skb_pull(skb,tcp_header_len);
      
      				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3266  			} else {
3267  				if (tcp_checksum_complete_user(sk, skb))
3268  					goto csum_error;
      
3270  				if ((int)skb->truesize > sk->forward_alloc)
3271  					goto step5;
      
      				NET_INC_STATS_BH(TCPHPHits);
      
      				/* Bulk data transfer: receiver */
      				__skb_pull(skb,tcp_header_len);
      				__skb_queue_tail(&sk->receive_queue, skb);
      				tcp_set_owner_r(skb, sk);
      				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
      			}
      
      			tcp_event_data_recv(sk, tp, skb);
      
3284  			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
      				/* Well, only one small jumplet in fast path... */
      				tcp_ack(sk, skb, FLAG_DATA);
      				tcp_data_snd_check(sk);
3288  				if (!tcp_ack_scheduled(tp))
3289  					goto no_ack;
      			}
      
3292  			if (eaten) {
3293  				if (tcp_in_quickack_mode(tp)) {
      					tcp_send_ack(sk);
3295  				} else {
      					tcp_send_delayed_ack(sk);
      				}
3298  			} else {
      				__tcp_ack_snd_check(sk, 0);
      			}
      
      no_ack:
3303  			if (eaten)
      				__kfree_skb(skb);
3305  			else
      				sk->data_ready(sk, 0);
3307  			return 0;
      		}
      	}
      
      slow_path:
3312  	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
3313  		goto csum_error;
      
      	/*
      	 * RFC1323: H1. Apply PAWS check first.
      	 */
      	if (tcp_fast_parse_options(skb, th, tp) && tp->saw_tstamp &&
3319  	    tcp_paws_discard(tp, skb)) {
3320  		if (!th->rst) {
      			NET_INC_STATS_BH(PAWSEstabRejected);
      			tcp_send_dupack(sk, skb);
3323  			goto discard;
      		}
      		/* Resets are accepted even if PAWS failed.
      
      		   ts_recent update must be made after we are sure
      		   that the packet is in window.
      		 */
      	}
      
      	/*
      	 *	Standard slow path.
      	 */
      
3336  	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, th->rst)) {
      		/* RFC793, page 37: "In all states except SYN-SENT, all reset
      		 * (RST) segments are validated by checking their SEQ-fields."
      		 * And page 69: "If an incoming segment is not acceptable,
      		 * an acknowledgment should be sent in reply (unless the RST bit
      		 * is set, if so drop the segment and return)".
      		 */
3343  		if (!th->rst)
      			tcp_send_dupack(sk, skb);
3345  		goto discard;
      	}
      
3348  	if(th->rst) {
      		tcp_reset(sk);
3350  		goto discard;
      	}
      
      	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
      
3355  	if(th->syn && TCP_SKB_CB(skb)->seq != tp->syn_seq) {
      		TCP_INC_STATS_BH(TcpInErrs);
      		NET_INC_STATS_BH(TCPAbortOnSyn);
      		tcp_reset(sk);
3359  		return 1;
      	}
      
      step5:
3363  	if(th->ack)
      		tcp_ack(sk, skb, FLAG_SLOWPATH);
      
      	/* Process urgent data. */
      	tcp_urg(sk, th, len);
      
      	/* step 7: process the segment text */
      	tcp_data(skb, sk, len);
      
      	tcp_data_snd_check(sk);
      	tcp_ack_snd_check(sk);
3374  	return 0;
      
      csum_error:
      	TCP_INC_STATS_BH(TcpInErrs);
      
      discard:
      	__kfree_skb(skb);
3381  	return 0;
      }
      
3384  static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
      					 struct tcphdr *th, unsigned len)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      	int saved_clamp = tp->mss_clamp;
      
      	tcp_parse_options(skb, tp, 0);
      
3392  	if (th->ack) {
      		/* rfc793:
      		 * "If the state is SYN-SENT then
      		 *    first check the ACK bit
      		 *      If the ACK bit is set
      		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
      		 *        a reset (unless the RST bit is set, if so drop
      		 *        the segment and return)"
      		 *
      		 *  We do not send data with SYN, so that RFC-correct
      		 *  test reduces to:
      		 */
3404  		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
3405  			goto reset_and_undo;
      
      		if (tp->saw_tstamp && tp->rcv_tsecr &&
3408  		    !between(tp->rcv_tsecr, tp->retrans_stamp, tcp_time_stamp)) {
      			NET_INC_STATS_BH(PAWSActiveRejected);
3410  			goto reset_and_undo;
      		}
      
      		/* Now ACK is acceptable.
      		 *
      		 * "If the RST bit is set
      		 *    If the ACK was acceptable then signal the user "error:
      		 *    connection reset", drop the segment, enter CLOSED state,
      		 *    delete TCB, and return."
      		 */
      
3421  		if (th->rst) {
      			tcp_reset(sk);
3423  			goto discard;
      		}
      
      		/* rfc793:
      		 *   "fifth, if neither of the SYN or RST bits is set then
      		 *    drop the segment and return."
      		 *
      		 *    See note below!
      		 *                                        --ANK(990513)
      		 */
3433  		if (!th->syn)
3434  			goto discard_and_undo;
      
      		/* rfc793:
      		 *   "If the SYN bit is on ...
      		 *    are acceptable then ...
      		 *    (our SYN has been ACKed), change the connection
      		 *    state to ESTABLISHED..."
      		 */
      
3443  		TCP_ECN_rcv_synack(tp, th);
      
      		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
      		tcp_ack(sk, skb, FLAG_SLOWPATH);
      
      		/* Ok.. it's good. Set up sequence numbers and
      		 * move to established.
      		 */
      		tp->rcv_nxt = TCP_SKB_CB(skb)->seq+1;
      		tp->rcv_wup = TCP_SKB_CB(skb)->seq+1;
      
      		/* RFC1323: The window in SYN & SYN/ACK segments is
      		 * never scaled.
      		 */
      		tp->snd_wnd = ntohs(th->window);
      		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
      		tp->syn_seq = TCP_SKB_CB(skb)->seq;
      		tp->fin_seq = TCP_SKB_CB(skb)->seq;
      
3462  		if (tp->wscale_ok == 0) {
      			tp->snd_wscale = tp->rcv_wscale = 0;
      			tp->window_clamp = min(tp->window_clamp,65535);
      		}
      
3467  		if (tp->saw_tstamp) {
      			tp->tstamp_ok = 1;
      			tp->tcp_header_len =
      				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
      			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
      			tcp_store_ts_recent(tp);
3473  		} else {
      			tp->tcp_header_len = sizeof(struct tcphdr);
      		}
      
3477  		if (tp->sack_ok && sysctl_tcp_fack)
      			tp->sack_ok |= 2;
      
      		tcp_sync_mss(sk, tp->pmtu_cookie);
      		tcp_initialize_rcv_mss(sk);
      		tcp_init_metrics(sk);
      		tcp_init_buffer_space(sk);
      
3485  		if (sk->keepopen)
      			tcp_reset_keepalive_timer(sk, keepalive_time_when(tp));
      
3488  		if (tp->snd_wscale == 0)
      			__tcp_fast_path_on(tp, tp->snd_wnd);
3490  		else
      			tp->pred_flags = 0;
      
      		/* Remember, tcp_poll() does not lock socket!
      		 * Change state from SYN-SENT only after copied_seq
      		 * is initilized. */
      		tp->copied_seq = tp->rcv_nxt;
      		mb();
      		tcp_set_state(sk, TCP_ESTABLISHED);
      
3500  		if(!sk->dead) {
      			sk->state_change(sk);
      			sk_wake_async(sk, 0, POLL_OUT);
      		}
      
3505  		if (tp->write_pending || tp->defer_accept) {
      			/* Save one ACK. Data will be ready after
      			 * several ticks, if write_pending is set.
      			 *
      			 * It may be deleted, but with this feature tcpdumps
      			 * look so _wonderfully_ clever, that I was not able
      			 * to stand against the temptation 8)     --ANK
      			 */
      			tcp_schedule_ack(tp);
      			tp->ack.lrcvtime = tcp_time_stamp;
      			tcp_enter_quickack_mode(tp);
      			tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX);
      
      discard:
      			__kfree_skb(skb);
3520  			return 0;
3521  		} else {
      			tcp_send_ack(sk);
      		}
3524  		return -1;
      	}
      
      	/* No ACK in the segment */
      
3529  	if (th->rst) {
      		/* rfc793:
      		 * "If the RST bit is set
      		 *
      		 *      Otherwise (no ACK) drop the segment and return."
      		 */
      
3536  		goto discard_and_undo;
      	}
      
      	/* PAWS check. */
3540  	if (tp->ts_recent_stamp && tp->saw_tstamp && tcp_paws_check(tp, 0))
3541  		goto discard_and_undo;
      
3543  	if (th->syn) {
      		/* We see SYN without ACK. It is attempt of
      		 * simultaneous connect with crossed SYNs.
      		 * Particularly, it can be connect to self.
      		 */
      		tcp_set_state(sk, TCP_SYN_RECV);
      
3550  		if (tp->saw_tstamp) {
      			tp->tstamp_ok = 1;
      			tcp_store_ts_recent(tp);
      			tp->tcp_header_len =
      				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
3555  		} else {
      			tp->tcp_header_len = sizeof(struct tcphdr);
      		}
      
      		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
      		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
      
      		/* RFC1323: The window in SYN & SYN/ACK segments is
      		 * never scaled.
      		 */
      		tp->snd_wnd = ntohs(th->window);
      		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
      		tp->max_window = tp->snd_wnd;
      
      		tcp_sync_mss(sk, tp->pmtu_cookie);
      		tcp_initialize_rcv_mss(sk);
      
3572  		TCP_ECN_rcv_syn(tp, th);
      
      		tcp_send_synack(sk);
      #if 0
      		/* Note, we could accept data and URG from this segment.
      		 * There are no obstacles to make this.
      		 *
      		 * However, if we ignore data in ACKless segments sometimes,
      		 * we have no reasons to accept it sometimes.
      		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
      		 * is not flawless. So, discard packet for sanity.
      		 * Uncomment this return to process the data.
      		 */
      		return -1;
      #else
3587  		goto discard;
      #endif
      	}
      	/* "fifth, if neither of the SYN or RST bits is set then
      	 * drop the segment and return."
      	 */
      
      discard_and_undo:
      	tcp_clear_options(tp);
      	tp->mss_clamp = saved_clamp;
3597  	goto discard;
      
      reset_and_undo:
      	tcp_clear_options(tp);
      	tp->mss_clamp = saved_clamp;
3602  	return 1;
      }
      
      
      /*
       *	This function implements the receiving procedure of RFC 793 for
       *	all states except ESTABLISHED and TIME_WAIT. 
       *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
       *	address independent.
       */
      	
3613  int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
      			  struct tcphdr *th, unsigned len)
      {
      	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
      	int queued = 0;
      
      	tp->saw_tstamp = 0;
      
3621  	switch (sk->state) {
3622  	case TCP_CLOSE:
3623  		goto discard;
      
3625  	case TCP_LISTEN:
3626  		if(th->ack)
3627  			return 1;
      
3629  		if(th->syn) {
3630  			if(tp->af_specific->conn_request(sk, skb) < 0)
3631  				return 1;
      
      			/* Now we have several options: In theory there is 
      			 * nothing else in the frame. KA9Q has an option to 
      			 * send data with the syn, BSD accepts data with the
      			 * syn up to the [to be] advertised window and 
      			 * Solaris 2.1 gives you a protocol error. For now 
      			 * we just ignore it, that fits the spec precisely 
      			 * and avoids incompatibilities. It would be nice in
      			 * future to drop through and process the data.
      			 *
      			 * Now that TTCP is starting to be used we ought to 
      			 * queue this data.
      			 * But, this leaves one open to an easy denial of
      		 	 * service attack, and SYN cookies can't defend
      			 * against this problem. So, we drop the data
      			 * in the interest of security over speed.
      			 */
3649  			goto discard;
      		}
3651  		goto discard;
      
3653  	case TCP_SYN_SENT:
      		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
3655  		if (queued >= 0)
3656  			return queued;
      		queued = 0;
3658  		goto step6;
      	}
      
      	if (tcp_fast_parse_options(skb, th, tp) && tp->saw_tstamp &&
3662  	    tcp_paws_discard(tp, skb)) {
3663  		if (!th->rst) {
      			NET_INC_STATS_BH(PAWSEstabRejected);
      			tcp_send_dupack(sk, skb);
3666  			goto discard;
      		}
      		/* Reset is accepted even if it did not pass PAWS. */
      	}
      
      	/* step 1: check sequence number */
3672  	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, th->rst)) {
3673  		if (!th->rst)
      			tcp_send_dupack(sk, skb);
3675  		goto discard;
      	}
      
      	/* step 2: check RST bit */
3679  	if(th->rst) {
      		tcp_reset(sk);
3681  		goto discard;
      	}
      
      	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
      
      	/* step 3: check security and precedence [ignored] */
      
      	/*	step 4:
      	 *
      	 *	Check for a SYN, and ensure it matches the SYN we were
      	 *	first sent. We have to handle the rather unusual (but valid)
      	 *	sequence that KA9Q derived products may generate of
      	 *
      	 *	SYN
      	 *				SYN|ACK Data
      	 *	ACK	(lost)
      	 *				SYN|ACK Data + More Data
      	 *	.. we must ACK not RST...
      	 *
      	 *	We keep syn_seq as the sequence space occupied by the 
      	 *	original syn. 
      	 */
      
3704  	if (th->syn && TCP_SKB_CB(skb)->seq != tp->syn_seq) {
      		NET_INC_STATS_BH(TCPAbortOnSyn);
      		tcp_reset(sk);
3707  		return 1;
      	}
      
      	/* step 5: check the ACK field */
3711  	if (th->ack) {
      		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
      
3714  		switch(sk->state) {
3715  		case TCP_SYN_RECV:
3716  			if (acceptable) {
      				tp->copied_seq = tp->rcv_nxt;
      				mb();
      				tcp_set_state(sk, TCP_ESTABLISHED);
      
      				/* Note, that this wakeup is only for marginal
      				 * crossed SYN case. Passively open sockets
      				 * are not waked up, because sk->sleep == NULL
      				 * and sk->socket == NULL.
      				 */
3726  				if (sk->socket) {
      					sk->state_change(sk);
      					sk_wake_async(sk,0,POLL_OUT);
      				}
      
      				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
      				tp->snd_wnd = ntohs(th->window) << tp->snd_wscale;
      				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
      
      				/* tcp_ack considers this ACK as duplicate
      				 * and does not calculate rtt.
      				 * Fix it at least with timestamps.
      				 */
3739  				if (tp->saw_tstamp && tp->rcv_tsecr && !tp->srtt)
      					tcp_ack_saw_tstamp(tp, 0);
      
3742  				if (tp->tstamp_ok)
      					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
      
      				tcp_init_metrics(sk);
      				tcp_initialize_rcv_mss(sk);
      				tcp_init_buffer_space(sk);
      				tcp_fast_path_on(tp);
3749  			} else {
3750  				return 1;
      			}
3752  			break;
      
3754  		case TCP_FIN_WAIT1:
3755  			if (tp->snd_una == tp->write_seq) {
      				tcp_set_state(sk, TCP_FIN_WAIT2);
      				sk->shutdown |= SEND_SHUTDOWN;
      				dst_confirm(sk->dst_cache);
      
3760  				if (!sk->dead) {
      					/* Wake up lingering close() */
      					sk->state_change(sk);
3763  				} else {
      					int tmo;
      
      					if (tp->linger2 < 0 ||
      					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3768  					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
      						tcp_done(sk);
      						NET_INC_STATS_BH(TCPAbortOnData);
3771  						return 1;
      					}
      
      					tmo = tcp_fin_time(tp);
3775  					if (tmo > TCP_TIMEWAIT_LEN) {
      						tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
3777  					} else if (th->fin || sk->lock.users) {
      						/* Bad case. We could lose such FIN otherwise.
      						 * It is not a big problem, but it looks confusing
      						 * and not so rare event. We still can lose it now,
      						 * if it spins in bh_lock_sock(), but it is really
      						 * marginal case.
      						 */
      						tcp_reset_keepalive_timer(sk, tmo);
3785  					} else {
      						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
3787  						goto discard;
      					}
      				}
      			}
3791  			break;
      
3793  		case TCP_CLOSING:
3794  			if (tp->snd_una == tp->write_seq) {
      				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3796  				goto discard;
      			}
3798  			break;
      
3800  		case TCP_LAST_ACK:
3801  			if (tp->snd_una == tp->write_seq) {
      				tcp_update_metrics(sk);
      				tcp_done(sk);
3804  				goto discard;
      			}
3806  			break;
      		}
3808  	} else
3809  		goto discard;
      
      step6:
      	/* step 6: check the URG bit */
      	tcp_urg(sk, th, len);
      
      	/* step 7: process the segment text */
3816  	switch (sk->state) {
3817  	case TCP_CLOSE_WAIT:
3818  	case TCP_CLOSING:
3819  		if (!before(TCP_SKB_CB(skb)->seq, tp->fin_seq))
3820  			break;
3821  	case TCP_FIN_WAIT1:
3822  	case TCP_FIN_WAIT2:
      		/* RFC 793 says to queue data in these states,
      		 * RFC 1122 says we MUST send a reset. 
      		 * BSD 4.4 also does reset.
      		 */
3827  		if (sk->shutdown & RCV_SHUTDOWN) {
      			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3829  			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
      				NET_INC_STATS_BH(TCPAbortOnData);
      				tcp_reset(sk);
3832  				return 1;
      			}
      		}
      		/* Fall through */
3836  	case TCP_ESTABLISHED: 
      		tcp_data(skb, sk, len);
      		queued = 1;
3839  		break;
      	}
      
      	/* tcp_data could move socket to TIME-WAIT */
3843  	if (sk->state != TCP_CLOSE) {
      		tcp_data_snd_check(sk);
      		tcp_ack_snd_check(sk);
      	}
      
3848  	if (!queued) { 
      discard:
      		__kfree_skb(skb);
      	}
3852  	return 0;
      }