/*
       * NET		An implementation of the SOCKET network access protocol.
       *
       * Version:	@(#)socket.c	1.1.93	18/02/95
       *
       * Authors:	Orest Zborowski, <obz@Kodak.COM>
       *		Ross Biro, <bir7@leland.Stanford.Edu>
       *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
       *
       * Fixes:
       *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
       *					shutdown()
       *		Alan Cox	:	verify_area() fixes
       *		Alan Cox	:	Removed DDI
       *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
       *		Alan Cox	:	Moved a load of checks to the very
       *					top level.
       *		Alan Cox	:	Move address structures to/from user
       *					mode above the protocol layers.
       *		Rob Janssen	:	Allow 0 length sends.
       *		Alan Cox	:	Asynchronous I/O support (cribbed from the
       *					tty drivers).
       *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
       *		Jeff Uphoff	:	Made max number of sockets command-line
       *					configurable.
       *		Matti Aarnio	:	Made the number of sockets dynamic,
       *					to be allocated when needed, and mr.
       *					Uphoff's max is used as max to be
       *					allowed to allocate.
       *		Linus		:	Argh. removed all the socket allocation
       *					altogether: it's in the inode now.
       *		Alan Cox	:	Made sock_alloc()/sock_release() public
       *					for NetROM and future kernel nfsd type
       *					stuff.
       *		Alan Cox	:	sendmsg/recvmsg basics.
       *		Tom Dyas	:	Export net symbols.
       *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
       *		Alan Cox	:	Added thread locking to sys_* calls
       *					for sockets. May have errors at the
       *					moment.
       *		Kevin Buhr	:	Fixed the dumb errors in the above.
       *		Andi Kleen	:	Some small cleanups, optimizations,
       *					and fixed a copy_from_user() bug.
       *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
       *		Tigran Aivazian	:	Made listen(2) backlog sanity checks 
       *					protocol-independent
       *
       *
       *		This program is free software; you can redistribute it and/or
       *		modify it under the terms of the GNU General Public License
       *		as published by the Free Software Foundation; either version
       *		2 of the License, or (at your option) any later version.
       *
       *
       *	This module is effectively the top level interface to the BSD socket
       *	paradigm. 
       *
       */
      
      #include <linux/config.h>
      #include <linux/mm.h>
      #include <linux/smp_lock.h>
      #include <linux/socket.h>
      #include <linux/file.h>
      #include <linux/net.h>
      #include <linux/interrupt.h>
      #include <linux/netdevice.h>
      #include <linux/proc_fs.h>
      #include <linux/wanrouter.h>
      #include <linux/init.h>
      #include <linux/poll.h>
      #include <linux/cache.h>
      #include <linux/module.h>
      
      #if defined(CONFIG_KMOD) && defined(CONFIG_NET)
      #include <linux/kmod.h>
      #endif
      
      #include <asm/uaccess.h>
      
      #include <linux/inet.h>
      #include <net/ip.h>
      #include <net/sock.h>
      #include <net/tcp.h>
      #include <net/udp.h>
      #include <net/scm.h>
      #include <linux/netfilter.h>
      
      static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
      static loff_t sock_lseek(struct file *file, loff_t offset, int whence);
      static ssize_t sock_read(struct file *file, char *buf,
      			 size_t size, loff_t *ppos);
      static ssize_t sock_write(struct file *file, const char *buf,
      			  size_t size, loff_t *ppos);
      static int sock_mmap(struct file *file, struct vm_area_struct * vma);
      
      static int sock_close(struct inode *inode, struct file *file);
      static unsigned int sock_poll(struct file *file,
      			      struct poll_table_struct *wait);
      static int sock_ioctl(struct inode *inode, struct file *file,
      		      unsigned int cmd, unsigned long arg);
      static int sock_fasync(int fd, struct file *filp, int on);
      static ssize_t sock_readv(struct file *file, const struct iovec *vector,
      			  unsigned long count, loff_t *ppos);
      static ssize_t sock_writev(struct file *file, const struct iovec *vector,
      			  unsigned long count, loff_t *ppos);
      
      
      /*
       *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
       *	in the operation structures but are done directly via the socketcall() multiplexor.
       */
      
      static struct file_operations socket_file_ops = {
      	llseek:		sock_lseek,
      	read:		sock_read,
      	write:		sock_write,
      	poll:		sock_poll,
      	ioctl:		sock_ioctl,
      	mmap:		sock_mmap,
      	open:		sock_no_open,	/* special open code to disallow open via /proc */
      	release:	sock_close,
      	fasync:		sock_fasync,
      	readv:		sock_readv,
      	writev:		sock_writev
      };
      
      /*
       *	The protocol list. Each protocol is registered in here.
       */
      
      static struct net_proto_family *net_families[NPROTO];
      
      #ifdef CONFIG_SMP
      static atomic_t net_family_lockct = ATOMIC_INIT(0);
      static spinlock_t net_family_lock = SPIN_LOCK_UNLOCKED;
      
      /* The strategy is: modifications net_family vector are short, do not
         sleep and veeery rare, but read access should be free of any exclusive
         locks.
       */
      
      static void net_family_write_lock(void)
      {
      	spin_lock(&net_family_lock);
      	while (atomic_read(&net_family_lockct) != 0) {
      		spin_unlock(&net_family_lock);
      
      		current->policy |= SCHED_YIELD;
      		schedule();
      
      		spin_lock(&net_family_lock);
      	}
      }
      
      static __inline__ void net_family_write_unlock(void)
      {
      	spin_unlock(&net_family_lock);
      }
      
      static __inline__ void net_family_read_lock(void)
      {
      	atomic_inc(&net_family_lockct);
      	spin_unlock_wait(&net_family_lock);
      }
      
      static __inline__ void net_family_read_unlock(void)
      {
      	atomic_dec(&net_family_lockct);
      }
      
      #else
      #define net_family_write_lock() do { } while(0)
      #define net_family_write_unlock() do { } while(0)
      #define net_family_read_lock() do { } while(0)
      #define net_family_read_unlock() do { } while(0)
      #endif
      
      
      /*
       *	Statistics counters of the socket lists
       */
      
      static union {
      	int	counter;
      	char	__pad[SMP_CACHE_BYTES];
      } sockets_in_use[NR_CPUS] __cacheline_aligned = {{0}};
      
      /*
       *	Support routines. Move socket addresses back and forth across the kernel/user
       *	divide and look after the messy bits.
       */
      
      #define MAX_SOCK_ADDR	128		/* 108 for Unix domain - 
      					   16 for IP, 16 for IPX,
      					   24 for IPv6,
      					   about 80 for AX.25 
      					   must be at least one bigger than
      					   the AF_UNIX size (see net/unix/af_unix.c
      					   :unix_mkname()).  
      					 */
      					 
      /**
       *	move_addr_to_kernel	-	copy a socket address into kernel space
       *	@uaddr: Address in user space
       *	@kaddr: Address in kernel space
       *	@ulen: Length in user space
       *
       *	The address is copied into kernel space. If the provided address is
       *	too long an error code of -EINVAL is returned. If the copy gives
       *	invalid addresses -EFAULT is returned. On a success 0 is returned.
       */
      
 214  int move_addr_to_kernel(void *uaddr, int ulen, void *kaddr)
      {
 216  	if(ulen<0||ulen>MAX_SOCK_ADDR)
 217  		return -EINVAL;
 218  	if(ulen==0)
 219  		return 0;
 220  	if(copy_from_user(kaddr,uaddr,ulen))
 221  		return -EFAULT;
 222  	return 0;
      }
      
      /**
       *	move_addr_to_user	-	copy an address to user space
       *	@kaddr: kernel space address
       *	@klen: length of address in kernel
       *	@uaddr: user space address
       *	@ulen: pointer to user length field
       *
       *	The value pointed to by ulen on entry is the buffer length available.
       *	This is overwritten with the buffer space used. -EINVAL is returned
       *	if an overlong buffer is specified or a negative buffer size. -EFAULT
       *	is returned if either the buffer or the length field are not
       *	accessible.
       *	After copying the data up to the limit the user specifies, the true
       *	length of the data is written over the length limit the user
       *	specified. Zero is returned for a success.
       */
       
 242  int move_addr_to_user(void *kaddr, int klen, void *uaddr, int *ulen)
      {
      	int err;
      	int len;
      
 247  	if((err=get_user(len, ulen)))
 248  		return err;
 249  	if(len>klen)
      		len=klen;
 251  	if(len<0 || len> MAX_SOCK_ADDR)
 252  		return -EINVAL;
 253  	if(len)
      	{
 255  		if(copy_to_user(uaddr,kaddr,len))
 256  			return -EFAULT;
      	}
      	/*
      	 *	"fromlen shall refer to the value before truncation.."
      	 *			1003.1g
      	 */
 262  	return __put_user(klen, ulen);
      }
      
      #define SOCKFS_MAGIC 0x534F434B
 266  static int sockfs_statfs(struct super_block *sb, struct statfs *buf)
      {
      	buf->f_type = SOCKFS_MAGIC;
      	buf->f_bsize = 1024;
      	buf->f_namelen = 255;
 271  	return 0;
      }
      
      static struct super_operations sockfs_ops = {
      	statfs:		sockfs_statfs,
      };
      
 278  static struct super_block * sockfs_read_super(struct super_block *sb, void *data, int silent)
      {
      	struct inode *root = new_inode(sb);
 281  	if (!root)
 282  		return NULL;
      	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
      	root->i_uid = root->i_gid = 0;
      	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
      	sb->s_blocksize = 1024;
      	sb->s_blocksize_bits = 10;
      	sb->s_magic = SOCKFS_MAGIC;
      	sb->s_op	= &sockfs_ops;
      	sb->s_root = d_alloc(NULL, &(const struct qstr) { "socket:", 7, 0 });
 291  	if (!sb->s_root) {
      		iput(root);
 293  		return NULL;
      	}
      	sb->s_root->d_sb = sb;
      	sb->s_root->d_parent = sb->s_root;
      	d_instantiate(sb->s_root, root);
 298  	return sb;
      }
      
      static struct vfsmount *sock_mnt;
      static DECLARE_FSTYPE(sock_fs_type, "sockfs", sockfs_read_super,
      	FS_NOMOUNT|FS_SINGLE);
 304  static int sockfs_delete_dentry(struct dentry *dentry)
      {
 306  	return 1;
      }
      static struct dentry_operations sockfs_dentry_operations = {
      	d_delete:	sockfs_delete_dentry,
      };
      
      /*
       *	Obtains the first available file descriptor and sets it up for use.
       *
       *	This functions creates file structure and maps it to fd space
       *	of current process. On success it returns file descriptor
       *	and file struct implicitly stored in sock->file.
       *	Note that another thread may close file descriptor before we return
       *	from this function. We use the fact that now we do not refer
       *	to socket after mapping. If one day we will need it, this
       *	function will inincrement ref. count on file by 1.
       *
       *	In any case returned fd MAY BE not valid!
       *	This race condition is inavoidable
       *	with shared fd spaces, we cannot solve is inside kernel,
       *	but we take care of internal coherence yet.
       */
      
 329  static int sock_map_fd(struct socket *sock)
      {
      	int fd;
      	struct qstr this;
      	char name[32];
      
      	/*
      	 *	Find a file descriptor suitable for return to the user. 
      	 */
      
      	fd = get_unused_fd();
 340  	if (fd >= 0) {
      		struct file *file = get_empty_filp();
      
 343  		if (!file) {
      			put_unused_fd(fd);
      			fd = -ENFILE;
 346  			goto out;
      		}
      
      		sprintf(name, "[%lu]", sock->inode->i_ino);
      		this.name = name;
      		this.len = strlen(name);
      		this.hash = sock->inode->i_ino;
      
      		file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
 355  		if (!file->f_dentry) {
      			put_filp(file);
      			put_unused_fd(fd);
      			fd = -ENOMEM;
 359  			goto out;
      		}
      		file->f_dentry->d_op = &sockfs_dentry_operations;
      		d_add(file->f_dentry, sock->inode);
      		file->f_vfsmnt = mntget(sock_mnt);
      
      		sock->file = file;
      		file->f_op = sock->inode->i_fop = &socket_file_ops;
      		file->f_mode = 3;
      		file->f_flags = O_RDWR;
      		file->f_pos = 0;
      		fd_install(fd, file);
      	}
      
      out:
 374  	return fd;
      }
      
 377  extern __inline__ struct socket *socki_lookup(struct inode *inode)
      {
 379  	return &inode->u.socket_i;
      }
      
      /**
       *	sockfd_lookup	- 	Go from a file number to its socket slot
       *	@fd: file handle
       *	@err: pointer to an error code return
       *
       *	The file handle passed in is locked and the socket it is bound
       *	too is returned. If an error occurs the err pointer is overwritten
       *	with a negative errno code and NULL is returned. The function checks
       *	for both invalid handles and passing a handle which is not a socket.
       *
       *	On a success the socket object pointer is returned.
       */
      
 395  struct socket *sockfd_lookup(int fd, int *err)
      {
      	struct file *file;
      	struct inode *inode;
      	struct socket *sock;
      
 401  	if (!(file = fget(fd)))
      	{
      		*err = -EBADF;
 404  		return NULL;
      	}
      
      	inode = file->f_dentry->d_inode;
 408  	if (!inode->i_sock || !(sock = socki_lookup(inode)))
      	{
      		*err = -ENOTSOCK;
      		fput(file);
 412  		return NULL;
      	}
      
 415  	if (sock->file != file) {
      		printk(KERN_ERR "socki_lookup: socket file changed!\n");
      		sock->file = file;
      	}
 419  	return sock;
      }
      
 422  extern __inline__ void sockfd_put(struct socket *sock)
      {
      	fput(sock->file);
      }
      
      /**
       *	sock_alloc	-	allocate a socket
       *	
       *	Allocate a new inode and socket object. The two are bound together
       *	and initialised. The socket is then returned. If we are out of inodes
       *	NULL is returned.
       */
      
 435  struct socket *sock_alloc(void)
      {
      	struct inode * inode;
      	struct socket * sock;
      
      	inode = get_empty_inode();
 441  	if (!inode)
 442  		return NULL;
      
      	inode->i_sb = sock_mnt->mnt_sb;
      	sock = socki_lookup(inode);
      
      	inode->i_mode = S_IFSOCK|S_IRWXUGO;
      	inode->i_sock = 1;
      	inode->i_uid = current->fsuid;
      	inode->i_gid = current->fsgid;
      
      	sock->inode = inode;
      	init_waitqueue_head(&sock->wait);
      	sock->fasync_list = NULL;
      	sock->state = SS_UNCONNECTED;
      	sock->flags = 0;
      	sock->ops = NULL;
      	sock->sk = NULL;
      	sock->file = NULL;
      
      	sockets_in_use[smp_processor_id()].counter++;
 462  	return sock;
      }
      
      /*
       *	In theory you can't get an open on this inode, but /proc provides
       *	a back door. Remember to keep it shut otherwise you'll let the
       *	creepy crawlies in.
       */
        
 471  static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
      {
 473  	return -ENXIO;
      }
      
      /**
       *	sock_release	-	close a socket
       *	@sock: socket to close
       *
       *	The socket is released from the protocol stack if it has a release
       *	callback, and the inode is then released if the socket is bound to
       *	an inode not a file. 
       */
       
 485  void sock_release(struct socket *sock)
      {
 487  	if (sock->ops) 
      		sock->ops->release(sock);
      
 490  	if (sock->fasync_list)
      		printk(KERN_ERR "sock_release: fasync list not empty!\n");
      
      	sockets_in_use[smp_processor_id()].counter--;
 494  	if (!sock->file) {
      		iput(sock->inode);
 496  		return;
      	}
      	sock->file=NULL;
      }
      
 501  int sock_sendmsg(struct socket *sock, struct msghdr *msg, int size)
      {
      	int err;
      	struct scm_cookie scm;
      
      	err = scm_send(sock, msg, &scm);
 507  	if (err >= 0) {
      		err = sock->ops->sendmsg(sock, msg, size, &scm);
      		scm_destroy(&scm);
      	}
 511  	return err;
      }
      
 514  int sock_recvmsg(struct socket *sock, struct msghdr *msg, int size, int flags)
      {
      	struct scm_cookie scm;
      
      	memset(&scm, 0, sizeof(scm));
      
      	size = sock->ops->recvmsg(sock, msg, size, flags, &scm);
 521  	if (size >= 0)
      		scm_recv(sock, msg, &scm, flags);
      
 524  	return size;
      }
      
      
      /*
       *	Sockets are not seekable.
       */
      
 532  static loff_t sock_lseek(struct file *file, loff_t offset, int whence)
      {
 534  	return -ESPIPE;
      }
      
      /*
       *	Read data from a socket. ubuf is a user mode pointer. We make sure the user
       *	area ubuf...ubuf+size-1 is writable before asking the protocol.
       */
      
 542  static ssize_t sock_read(struct file *file, char *ubuf,
      			 size_t size, loff_t *ppos)
      {
      	struct socket *sock;
      	struct iovec iov;
      	struct msghdr msg;
      	int flags;
      
 550  	if (ppos != &file->f_pos)
 551  		return -ESPIPE;
 552  	if (size==0)		/* Match SYS5 behaviour */
 553  		return 0;
      
      	sock = socki_lookup(file->f_dentry->d_inode); 
      
      	msg.msg_name=NULL;
      	msg.msg_namelen=0;
      	msg.msg_iov=&iov;
      	msg.msg_iovlen=1;
      	msg.msg_control=NULL;
      	msg.msg_controllen=0;
      	iov.iov_base=ubuf;
      	iov.iov_len=size;
      	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
      
 567  	return sock_recvmsg(sock, &msg, size, flags);
      }
      
      
      /*
       *	Write data to a socket. We verify that the user area ubuf..ubuf+size-1
       *	is readable by the user process.
       */
      
 576  static ssize_t sock_write(struct file *file, const char *ubuf,
      			  size_t size, loff_t *ppos)
      {
      	struct socket *sock;
      	struct msghdr msg;
      	struct iovec iov;
      	
 583  	if (ppos != &file->f_pos)
 584  		return -ESPIPE;
 585  	if(size==0)		/* Match SYS5 behaviour */
 586  		return 0;
      
      	sock = socki_lookup(file->f_dentry->d_inode); 
      
      	msg.msg_name=NULL;
      	msg.msg_namelen=0;
      	msg.msg_iov=&iov;
      	msg.msg_iovlen=1;
      	msg.msg_control=NULL;
      	msg.msg_controllen=0;
      	msg.msg_flags=!(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
 597  	if (sock->type == SOCK_SEQPACKET)
      		msg.msg_flags |= MSG_EOR;
      	iov.iov_base=(void *)ubuf;
      	iov.iov_len=size;
      	
 602  	return sock_sendmsg(sock, &msg, size);
      }
      
 605  int sock_readv_writev(int type, struct inode * inode, struct file * file,
      		      const struct iovec * iov, long count, long size)
      {
      	struct msghdr msg;
      	struct socket *sock;
      
      	sock = socki_lookup(inode);
      
      	msg.msg_name = NULL;
      	msg.msg_namelen = 0;
      	msg.msg_control = NULL;
      	msg.msg_controllen = 0;
      	msg.msg_iov = (struct iovec *) iov;
      	msg.msg_iovlen = count;
      	msg.msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
      
      	/* read() does a VERIFY_WRITE */
 622  	if (type == VERIFY_WRITE)
 623  		return sock_recvmsg(sock, &msg, size, msg.msg_flags);
      
 625  	if (sock->type == SOCK_SEQPACKET)
      		msg.msg_flags |= MSG_EOR;
      
 628  	return sock_sendmsg(sock, &msg, size);
      }
      
 631  static ssize_t sock_readv(struct file *file, const struct iovec *vector,
      			  unsigned long count, loff_t *ppos)
      {
      	size_t tot_len = 0;
      	int i;
 636          for (i = 0 ; i < count ; i++)
                      tot_len += vector[i].iov_len;
      	return sock_readv_writev(VERIFY_WRITE, file->f_dentry->d_inode,
 639  				 file, vector, count, tot_len);
      }
      	
 642  static ssize_t sock_writev(struct file *file, const struct iovec *vector,
      			   unsigned long count, loff_t *ppos)
      {
      	size_t tot_len = 0;
      	int i;
 647          for (i = 0 ; i < count ; i++)
                      tot_len += vector[i].iov_len;
      	return sock_readv_writev(VERIFY_READ, file->f_dentry->d_inode,
 650  				 file, vector, count, tot_len);
      }
      
      /*
       *	With an ioctl arg may well be a user mode pointer, but we don't know what to do
       *	with it - that's up to the protocol still.
       */
      
 658  int sock_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
      	   unsigned long arg)
      {
      	struct socket *sock;
      	int err;
      
 664  	unlock_kernel();
      	sock = socki_lookup(inode);
      	err = sock->ops->ioctl(sock, cmd, arg);
 667  	lock_kernel();
      
 669  	return err;
      }
      
      
      /* No kernel lock held - perfect */
 674  static unsigned int sock_poll(struct file *file, poll_table * wait)
      {
      	struct socket *sock;
      
      	/*
      	 *	We can't return errors to poll, so it's either yes or no. 
      	 */
      	sock = socki_lookup(file->f_dentry->d_inode);
 682  	return sock->ops->poll(file, sock, wait);
      }
      
 685  static int sock_mmap(struct file * file, struct vm_area_struct * vma)
      {
      	struct socket *sock = socki_lookup(file->f_dentry->d_inode);
      
 689  	return sock->ops->mmap(file, sock, vma);
      }
      
 692  int sock_close(struct inode *inode, struct file *filp)
      {
      	/*
      	 *	It was possible the inode is NULL we were 
      	 *	closing an unfinished socket. 
      	 */
      
 699  	if (!inode)
      	{
      		printk(KERN_DEBUG "sock_close: NULL inode\n");
 702  		return 0;
      	}
      	sock_fasync(-1, filp, 0);
      	sock_release(socki_lookup(inode));
 706  	return 0;
      }
      
      /*
       *	Update the socket async list
       *
       *	Fasync_list locking strategy.
       *
       *	1. fasync_list is modified only under process context socket lock
       *	   i.e. under semaphore.
       *	2. fasync_list is used under read_lock(&sk->callback_lock)
       *	   or under socket lock.
       *	3. fasync_list can be used from softirq context, so that
       *	   modification under socket lock have to be enhanced with
       *	   write_lock_bh(&sk->callback_lock).
       *							--ANK (990710)
       */
      
 724  static int sock_fasync(int fd, struct file *filp, int on)
      {
      	struct fasync_struct *fa, *fna=NULL, **prev;
      	struct socket *sock;
      	struct sock *sk;
      
 730  	if (on)
      	{
      		fna=(struct fasync_struct *)kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
 733  		if(fna==NULL)
 734  			return -ENOMEM;
      	}
      
      
      	sock = socki_lookup(filp->f_dentry->d_inode);
      	
 740  	if ((sk=sock->sk) == NULL)
 741  		return -EINVAL;
      
 743  	lock_sock(sk);
      
      	prev=&(sock->fasync_list);
      
 747  	for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev)
 748  		if (fa->fa_file==filp)
 749  			break;
      
 751  	if(on)
      	{
 753  		if(fa!=NULL)
      		{
 755  			write_lock_bh(&sk->callback_lock);
      			fa->fa_fd=fd;
 757  			write_unlock_bh(&sk->callback_lock);
      
      			kfree(fna);
 760  			goto out;
      		}
      		fna->fa_file=filp;
      		fna->fa_fd=fd;
      		fna->magic=FASYNC_MAGIC;
      		fna->fa_next=sock->fasync_list;
 766  		write_lock_bh(&sk->callback_lock);
      		sock->fasync_list=fna;
 768  		write_unlock_bh(&sk->callback_lock);
      	}
 770  	else
      	{
 772  		if (fa!=NULL)
      		{
 774  			write_lock_bh(&sk->callback_lock);
      			*prev=fa->fa_next;
 776  			write_unlock_bh(&sk->callback_lock);
      			kfree(fa);
      		}
      	}
      
      out:
 782  	release_sock(sock->sk);
 783  	return 0;
      }
      
      /* This function may be called only under socket lock or callback_lock */
      
 788  int sock_wake_async(struct socket *sock, int how, int band)
      {
 790  	if (!sock || !sock->fasync_list)
 791  		return -1;
 792  	switch (how)
      	{
 794  	case 1:
      		
 796  		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
 797  			break;
 798  		goto call_kill;
 799  	case 2:
 800  		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
 801  			break;
      		/* fall through */
 803  	case 0:
      	call_kill:
      		__kill_fasync(sock->fasync_list, SIGIO, band);
 806  		break;
 807  	case 3:
      		__kill_fasync(sock->fasync_list, SIGURG, band);
      	}
 810  	return 0;
      }
      
      
 814  int sock_create(int family, int type, int protocol, struct socket **res)
      {
      	int i;
      	struct socket *sock;
      
      	/*
      	 *	Check protocol is in range
      	 */
 822  	if(family<0 || family>=NPROTO)
 823  		return -EAFNOSUPPORT;
      
      	/* Compatibility.
      
      	   This uglymoron is moved from INET layer to here to avoid
      	   deadlock in module load.
      	 */
 830  	if (family == PF_INET && type == SOCK_PACKET) {
      		static int warned; 
 832  		if (!warned) {
      			warned = 1;
      			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm);
      		}
      		family = PF_PACKET;
      	}
      		
      #if defined(CONFIG_KMOD) && defined(CONFIG_NET)
      	/* Attempt to load a protocol module if the find failed. 
      	 * 
      	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 
      	 * requested real, full-featured networking support upon configuration.
      	 * Otherwise module support will break!
      	 */
      	if (net_families[family]==NULL)
      	{
      		char module_name[30];
      		sprintf(module_name,"net-pf-%d",family);
      		request_module(module_name);
      	}
      #endif
      
 854  	net_family_read_lock();
 855  	if (net_families[family] == NULL) {
      		i = -EAFNOSUPPORT;
 857  		goto out;
      	}
      
      /*
       *	Allocate the socket and allow the family to set things up. if
       *	the protocol is 0, the family is instructed to select an appropriate
       *	default.
       */
      
 866  	if (!(sock = sock_alloc())) 
      	{
      		printk(KERN_WARNING "socket: no more sockets\n");
      		i = -ENFILE;		/* Not exactly a match, but its the
      					   closest posix thing */
 871  		goto out;
      	}
      
      	sock->type  = type;
      
 876  	if ((i = net_families[family]->create(sock, protocol)) < 0) 
      	{
      		sock_release(sock);
 879  		goto out;
      	}
      
      	*res = sock;
      
      out:
 885  	net_family_read_unlock();
 886  	return i;
      }
      
 889  asmlinkage long sys_socket(int family, int type, int protocol)
      {
      	int retval;
      	struct socket *sock;
      
      	retval = sock_create(family, type, protocol, &sock);
 895  	if (retval < 0)
 896  		goto out;
      
      	retval = sock_map_fd(sock);
 899  	if (retval < 0)
 900  		goto out_release;
      
      out:
      	/* It may be already another descriptor 8) Not kernel problem. */
 904  	return retval;
      
      out_release:
      	sock_release(sock);
 908  	return retval;
      }
      
      /*
       *	Create a pair of connected sockets.
       */
      
 915  asmlinkage long sys_socketpair(int family, int type, int protocol, int usockvec[2])
      {
      	struct socket *sock1, *sock2;
      	int fd1, fd2, err;
      
      	/*
      	 * Obtain the first socket and check if the underlying protocol
      	 * supports the socketpair call.
      	 */
      
      	err = sock_create(family, type, protocol, &sock1);
 926  	if (err < 0)
 927  		goto out;
      
      	err = sock_create(family, type, protocol, &sock2);
 930  	if (err < 0)
 931  		goto out_release_1;
      
      	err = sock1->ops->socketpair(sock1, sock2);
 934  	if (err < 0) 
 935  		goto out_release_both;
      
      	fd1 = fd2 = -1;
      
      	err = sock_map_fd(sock1);
 940  	if (err < 0)
 941  		goto out_release_both;
      	fd1 = err;
      
      	err = sock_map_fd(sock2);
 945  	if (err < 0)
 946  		goto out_close_1;
      	fd2 = err;
      
      	/* fd1 and fd2 may be already another descriptors.
      	 * Not kernel problem.
      	 */
      
      	err = put_user(fd1, &usockvec[0]); 
 954  	if (!err)
      		err = put_user(fd2, &usockvec[1]);
 956  	if (!err)
 957  		return 0;
      
      	sys_close(fd2);
      	sys_close(fd1);
 961  	return err;
      
      out_close_1:
              sock_release(sock2);
      	sys_close(fd1);
 966  	return err;
      
      out_release_both:
              sock_release(sock2);
      out_release_1:
              sock_release(sock1);
      out:
 973  	return err;
      }
      
      
      /*
       *	Bind a name to a socket. Nothing much to do here since it's
       *	the protocol's responsibility to handle the local address.
       *
       *	We move the socket address to kernel space before we call
       *	the protocol layer (having also checked the address is ok).
       */
      
 985  asmlinkage long sys_bind(int fd, struct sockaddr *umyaddr, int addrlen)
      {
      	struct socket *sock;
      	char address[MAX_SOCK_ADDR];
      	int err;
      
 991  	if((sock = sockfd_lookup(fd,&err))!=NULL)
      	{
 993  		if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0)
      			err = sock->ops->bind(sock, (struct sockaddr *)address, addrlen);
      		sockfd_put(sock);
      	}			
 997  	return err;
      }
      
      
      /*
       *	Perform a listen. Basically, we allow the protocol to do anything
       *	necessary for a listen, and if that works, we mark the socket as
       *	ready for listening.
       */
      
1007  asmlinkage long sys_listen(int fd, int backlog)
      {
      	struct socket *sock;
      	int err;
      	
1012  	if ((sock = sockfd_lookup(fd, &err)) != NULL) {
1013  		if ((unsigned) backlog > SOMAXCONN)
      			backlog = SOMAXCONN;
      		err=sock->ops->listen(sock, backlog);
      		sockfd_put(sock);
      	}
1018  	return err;
      }
      
      
      /*
       *	For accept, we attempt to create a new socket, set up the link
       *	with the client, wake up the client, then return the new
       *	connected fd. We collect the address of the connector in kernel
       *	space and move it to user at the very end. This is unclean because
       *	we open the socket then return an error.
       *
       *	1003.1g adds the ability to recvmsg() to query connection pending
       *	status to recvmsg. We need to add that support in a way thats
       *	clean when we restucture accept also.
       */
      
1034  asmlinkage long sys_accept(int fd, struct sockaddr *upeer_sockaddr, int *upeer_addrlen)
      {
      	struct socket *sock, *newsock;
      	int err, len;
      	char address[MAX_SOCK_ADDR];
      
      	sock = sockfd_lookup(fd, &err);
1041  	if (!sock)
1042  		goto out;
      
      	err = -EMFILE;
1045  	if (!(newsock = sock_alloc())) 
1046  		goto out_put;
      
      	newsock->type = sock->type;
      	newsock->ops = sock->ops;
      
      	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1052  	if (err < 0)
1053  		goto out_release;
      
1055  	if (upeer_sockaddr) {
1056  		if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) {
      			err = -ECONNABORTED;
1058  			goto out_release;
      		}
      		err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen);
1061  		if (err < 0)
1062  			goto out_release;
      	}
      
      	/* File flags are not inherited via accept() unlike another OSes. */
      
1067  	if ((err = sock_map_fd(newsock)) < 0)
1068  		goto out_release;
      
      out_put:
      	sockfd_put(sock);
      out:
1073  	return err;
      
      out_release:
      	sock_release(newsock);
1077  	goto out_put;
      }
      
      
      /*
       *	Attempt to connect to a socket with the server address.  The address
       *	is in user space so we verify it is OK and move it to kernel space.
       *
       *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
       *	break bindings
       *
       *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
       *	other SEQPACKET protocols that take time to connect() as it doesn't
       *	include the -EINPROGRESS status for such sockets.
       */
      
1093  asmlinkage long sys_connect(int fd, struct sockaddr *uservaddr, int addrlen)
      {
      	struct socket *sock;
      	char address[MAX_SOCK_ADDR];
      	int err;
      
      	sock = sockfd_lookup(fd, &err);
1100  	if (!sock)
1101  		goto out;
      	err = move_addr_to_kernel(uservaddr, addrlen, address);
1103  	if (err < 0)
1104  		goto out_put;
      	err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen,
      				 sock->file->f_flags);
      out_put:
      	sockfd_put(sock);
      out:
1110  	return err;
      }
      
      /*
       *	Get the local address ('name') of a socket object. Move the obtained
       *	name to user space.
       */
      
1118  asmlinkage long sys_getsockname(int fd, struct sockaddr *usockaddr, int *usockaddr_len)
      {
      	struct socket *sock;
      	char address[MAX_SOCK_ADDR];
      	int len, err;
      	
      	sock = sockfd_lookup(fd, &err);
1125  	if (!sock)
1126  		goto out;
      	err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1128  	if (err)
1129  		goto out_put;
      	err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
      
      out_put:
      	sockfd_put(sock);
      out:
1135  	return err;
      }
      
      /*
       *	Get the remote address ('name') of a socket object. Move the obtained
       *	name to user space.
       */
      
1143  asmlinkage long sys_getpeername(int fd, struct sockaddr *usockaddr, int *usockaddr_len)
      {
      	struct socket *sock;
      	char address[MAX_SOCK_ADDR];
      	int len, err;
      
1149  	if ((sock = sockfd_lookup(fd, &err))!=NULL)
      	{
      		err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1);
1152  		if (!err)
      			err=move_addr_to_user(address,len, usockaddr, usockaddr_len);
      		sockfd_put(sock);
      	}
1156  	return err;
      }
      
      /*
       *	Send a datagram to a given address. We move the address into kernel
       *	space and check the user space data area is readable before invoking
       *	the protocol.
       */
      
1165  asmlinkage long sys_sendto(int fd, void * buff, size_t len, unsigned flags,
      			   struct sockaddr *addr, int addr_len)
      {
      	struct socket *sock;
      	char address[MAX_SOCK_ADDR];
      	int err;
      	struct msghdr msg;
      	struct iovec iov;
      	
      	sock = sockfd_lookup(fd, &err);
1175  	if (!sock)
1176  		goto out;
      	iov.iov_base=buff;
      	iov.iov_len=len;
      	msg.msg_name=NULL;
      	msg.msg_iov=&iov;
      	msg.msg_iovlen=1;
      	msg.msg_control=NULL;
      	msg.msg_controllen=0;
      	msg.msg_namelen=addr_len;
1185  	if(addr)
      	{
      		err = move_addr_to_kernel(addr, addr_len, address);
1188  		if (err < 0)
1189  			goto out_put;
      		msg.msg_name=address;
      	}
1192  	if (sock->file->f_flags & O_NONBLOCK)
      		flags |= MSG_DONTWAIT;
      	msg.msg_flags = flags;
      	err = sock_sendmsg(sock, &msg, len);
      
      out_put:		
      	sockfd_put(sock);
      out:
1200  	return err;
      }
      
      /*
       *	Send a datagram down a socket. 
       */
      
1207  asmlinkage long sys_send(int fd, void * buff, size_t len, unsigned flags)
      {
1209  	return sys_sendto(fd, buff, len, flags, NULL, 0);
      }
      
      /*
       *	Receive a frame from the socket and optionally record the address of the 
       *	sender. We verify the buffers are writable and if needed move the
       *	sender address from kernel to user space.
       */
      
1218  asmlinkage long sys_recvfrom(int fd, void * ubuf, size_t size, unsigned flags,
      			     struct sockaddr *addr, int *addr_len)
      {
      	struct socket *sock;
      	struct iovec iov;
      	struct msghdr msg;
      	char address[MAX_SOCK_ADDR];
      	int err,err2;
      
      	sock = sockfd_lookup(fd, &err);
1228  	if (!sock)
1229  		goto out;
      
      	msg.msg_control=NULL;
      	msg.msg_controllen=0;
      	msg.msg_iovlen=1;
      	msg.msg_iov=&iov;
      	iov.iov_len=size;
      	iov.iov_base=ubuf;
      	msg.msg_name=address;
      	msg.msg_namelen=MAX_SOCK_ADDR;
1239  	if (sock->file->f_flags & O_NONBLOCK)
      		flags |= MSG_DONTWAIT;
      	err=sock_recvmsg(sock, &msg, size, flags);
      
1243  	if(err >= 0 && addr != NULL && msg.msg_namelen)
      	{
      		err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1246  		if(err2<0)
      			err=err2;
      	}
      	sockfd_put(sock);			
      out:
1251  	return err;
      }
      
      /*
       *	Receive a datagram from a socket. 
       */
      
1258  asmlinkage long sys_recv(int fd, void * ubuf, size_t size, unsigned flags)
      {
1260  	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
      }
      
      /*
       *	Set a socket option. Because we don't know the option lengths we have
       *	to pass the user mode parameter for the protocols to sort out.
       */
      
1268  asmlinkage long sys_setsockopt(int fd, int level, int optname, char *optval, int optlen)
      {
      	int err;
      	struct socket *sock;
      	
1273  	if ((sock = sockfd_lookup(fd, &err))!=NULL)
      	{
1275  		if (level == SOL_SOCKET)
      			err=sock_setsockopt(sock,level,optname,optval,optlen);
1277  		else
      			err=sock->ops->setsockopt(sock, level, optname, optval, optlen);
      		sockfd_put(sock);
      	}
1281  	return err;
      }
      
      /*
       *	Get a socket option. Because we don't know the option lengths we have
       *	to pass a user mode parameter for the protocols to sort out.
       */
      
1289  asmlinkage long sys_getsockopt(int fd, int level, int optname, char *optval, int *optlen)
      {
      	int err;
      	struct socket *sock;
      
1294  	if ((sock = sockfd_lookup(fd, &err))!=NULL)
      	{
1296  		if (level == SOL_SOCKET)
      			err=sock_getsockopt(sock,level,optname,optval,optlen);
1298  		else
      			err=sock->ops->getsockopt(sock, level, optname, optval, optlen);
      		sockfd_put(sock);
      	}
1302  	return err;
      }
      
      
      /*
       *	Shutdown a socket.
       */
      
1310  asmlinkage long sys_shutdown(int fd, int how)
      {
      	int err;
      	struct socket *sock;
      
1315  	if ((sock = sockfd_lookup(fd, &err))!=NULL)
      	{
      		err=sock->ops->shutdown(sock, how);
      		sockfd_put(sock);
      	}
1320  	return err;
      }
      
      /*
       *	BSD sendmsg interface
       */
      
1327  asmlinkage long sys_sendmsg(int fd, struct msghdr *msg, unsigned flags)
      {
      	struct socket *sock;
      	char address[MAX_SOCK_ADDR];
      	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
      	unsigned char ctl[sizeof(struct cmsghdr) + 20];	/* 20 is size of ipv6_pktinfo */
      	unsigned char *ctl_buf = ctl;
      	struct msghdr msg_sys;
      	int err, ctl_len, iov_size, total_len;
      	
      	err = -EFAULT;
1338  	if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr)))
1339  		goto out; 
      
      	sock = sockfd_lookup(fd, &err);
1342  	if (!sock) 
1343  		goto out;
      
      	/* do not move before msg_sys is valid */
      	err = -EINVAL;
1347  	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1348  		goto out_put;
      
      	/* Check whether to allocate the iovec area*/
      	err = -ENOMEM;
      	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1353  	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
      		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1355  		if (!iov)
1356  			goto out_put;
      	}
      
      	/* This will also move the address data into kernel space */
      	err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1361  	if (err < 0) 
1362  		goto out_freeiov;
      	total_len = err;
      
      	err = -ENOBUFS;
      
1367  	if (msg_sys.msg_controllen > INT_MAX)
1368  		goto out_freeiov;
      	ctl_len = msg_sys.msg_controllen; 
1370  	if (ctl_len) 
      	{
1372  		if (ctl_len > sizeof(ctl))
      		{
      			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1375  			if (ctl_buf == NULL) 
1376  				goto out_freeiov;
      		}
      		err = -EFAULT;
1379  		if (copy_from_user(ctl_buf, msg_sys.msg_control, ctl_len))
1380  			goto out_freectl;
      		msg_sys.msg_control = ctl_buf;
      	}
      	msg_sys.msg_flags = flags;
      
1385  	if (sock->file->f_flags & O_NONBLOCK)
      		msg_sys.msg_flags |= MSG_DONTWAIT;
      	err = sock_sendmsg(sock, &msg_sys, total_len);
      
      out_freectl:
1390  	if (ctl_buf != ctl)    
      		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
      out_freeiov:
1393  	if (iov != iovstack)
      		sock_kfree_s(sock->sk, iov, iov_size);
      out_put:
      	sockfd_put(sock);
      out:       
1398  	return err;
      }
      
      /*
       *	BSD recvmsg interface
       */
      
1405  asmlinkage long sys_recvmsg(int fd, struct msghdr *msg, unsigned int flags)
      {
      	struct socket *sock;
      	struct iovec iovstack[UIO_FASTIOV];
      	struct iovec *iov=iovstack;
      	struct msghdr msg_sys;
      	unsigned long cmsg_ptr;
      	int err, iov_size, total_len, len;
      
      	/* kernel mode address */
      	char addr[MAX_SOCK_ADDR];
      
      	/* user mode address pointers */
      	struct sockaddr *uaddr;
      	int *uaddr_len;
      	
      	err=-EFAULT;
1422  	if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr)))
1423  		goto out;
      
      	sock = sockfd_lookup(fd, &err);
1426  	if (!sock)
1427  		goto out;
      
      	err = -EINVAL;
1430  	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1431  		goto out_put;
      	
      	/* Check whether to allocate the iovec area*/
      	err = -ENOMEM;
      	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1436  	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
      		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1438  		if (!iov)
1439  			goto out_put;
      	}
      
      	/*
      	 *	Save the user-mode address (verify_iovec will change the
      	 *	kernel msghdr to use the kernel address space)
      	 */
      	 
      	uaddr = msg_sys.msg_name;
      	uaddr_len = &msg->msg_namelen;
      	err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1450  	if (err < 0)
1451  		goto out_freeiov;
      	total_len=err;
      
      	cmsg_ptr = (unsigned long)msg_sys.msg_control;
      	msg_sys.msg_flags = 0;
      	
1457  	if (sock->file->f_flags & O_NONBLOCK)
      		flags |= MSG_DONTWAIT;
      	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1460  	if (err < 0)
1461  		goto out_freeiov;
      	len = err;
      
1464  	if (uaddr != NULL && msg_sys.msg_namelen) {
      		err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len);
1466  		if (err < 0)
1467  			goto out_freeiov;
      	}
      	err = __put_user(msg_sys.msg_flags, &msg->msg_flags);
1470  	if (err)
1471  		goto out_freeiov;
      	err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, 
      							 &msg->msg_controllen);
1474  	if (err)
1475  		goto out_freeiov;
      	err = len;
      
      out_freeiov:
1479  	if (iov != iovstack)
      		sock_kfree_s(sock->sk, iov, iov_size);
      out_put:
      	sockfd_put(sock);
      out:
1484  	return err;
      }
      
      
      /*
       *	Perform a file control on a socket file descriptor.
       *
       *	Doesn't acquire a fd lock, because no network fcntl
       *	function sleeps currently.
       */
      
1495  int sock_fcntl(struct file *filp, unsigned int cmd, unsigned long arg)
      {
      	struct socket *sock;
      
      	sock = socki_lookup (filp->f_dentry->d_inode);
1500  	if (sock && sock->ops)
1501  		return sock_no_fcntl(sock, cmd, arg);
1502  	return(-EINVAL);
      }
      
      /* Argument list sizes for sys_socketcall */
      #define AL(x) ((x) * sizeof(unsigned long))
      static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
      				AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
      				AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};
      #undef AL
      
      /*
       *	System call vectors. 
       *
       *	Argument checking cleaned up. Saved 20% in size.
       *  This function doesn't need to set the kernel lock because
       *  it is set by the callees. 
       */
      
1520  asmlinkage long sys_socketcall(int call, unsigned long *args)
      {
      	unsigned long a[6];
      	unsigned long a0,a1;
      	int err;
      
1526  	if(call<1||call>SYS_RECVMSG)
1527  		return -EINVAL;
      
      	/* copy_from_user should be SMP safe. */
1530  	if (copy_from_user(a, args, nargs[call]))
1531  		return -EFAULT;
      		
      	a0=a[0];
      	a1=a[1];
      	
1536  	switch(call) 
      	{
1538  		case SYS_SOCKET:
      			err = sys_socket(a0,a1,a[2]);
1540  			break;
1541  		case SYS_BIND:
      			err = sys_bind(a0,(struct sockaddr *)a1, a[2]);
1543  			break;
1544  		case SYS_CONNECT:
      			err = sys_connect(a0, (struct sockaddr *)a1, a[2]);
1546  			break;
1547  		case SYS_LISTEN:
      			err = sys_listen(a0,a1);
1549  			break;
1550  		case SYS_ACCEPT:
      			err = sys_accept(a0,(struct sockaddr *)a1, (int *)a[2]);
1552  			break;
1553  		case SYS_GETSOCKNAME:
      			err = sys_getsockname(a0,(struct sockaddr *)a1, (int *)a[2]);
1555  			break;
1556  		case SYS_GETPEERNAME:
      			err = sys_getpeername(a0, (struct sockaddr *)a1, (int *)a[2]);
1558  			break;
1559  		case SYS_SOCKETPAIR:
      			err = sys_socketpair(a0,a1, a[2], (int *)a[3]);
1561  			break;
1562  		case SYS_SEND:
      			err = sys_send(a0, (void *)a1, a[2], a[3]);
1564  			break;
1565  		case SYS_SENDTO:
      			err = sys_sendto(a0,(void *)a1, a[2], a[3],
      					 (struct sockaddr *)a[4], a[5]);
1568  			break;
1569  		case SYS_RECV:
      			err = sys_recv(a0, (void *)a1, a[2], a[3]);
1571  			break;
1572  		case SYS_RECVFROM:
      			err = sys_recvfrom(a0, (void *)a1, a[2], a[3],
      					   (struct sockaddr *)a[4], (int *)a[5]);
1575  			break;
1576  		case SYS_SHUTDOWN:
      			err = sys_shutdown(a0,a1);
1578  			break;
1579  		case SYS_SETSOCKOPT:
      			err = sys_setsockopt(a0, a1, a[2], (char *)a[3], a[4]);
1581  			break;
1582  		case SYS_GETSOCKOPT:
      			err = sys_getsockopt(a0, a1, a[2], (char *)a[3], (int *)a[4]);
1584  			break;
1585  		case SYS_SENDMSG:
      			err = sys_sendmsg(a0, (struct msghdr *) a1, a[2]);
1587  			break;
1588  		case SYS_RECVMSG:
      			err = sys_recvmsg(a0, (struct msghdr *) a1, a[2]);
1590  			break;
1591  		default:
      			err = -EINVAL;
1593  			break;
      	}
1595  	return err;
      }
      
      /*
       *	This function is called by a protocol handler that wants to
       *	advertise its address family, and have it linked into the
       *	SOCKET module.
       */
      
1604  int sock_register(struct net_proto_family *ops)
      {
      	int err;
      
1608  	if (ops->family >= NPROTO) {
      		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
1610  		return -ENOBUFS;
      	}
1612  	net_family_write_lock();
      	err = -EEXIST;
1614  	if (net_families[ops->family] == NULL) {
      		net_families[ops->family]=ops;
      		err = 0;
      	}
1618  	net_family_write_unlock();
1619  	return err;
      }
      
      /*
       *	This function is called by a protocol handler that wants to
       *	remove its address family, and have it unlinked from the
       *	SOCKET module.
       */
      
1628  int sock_unregister(int family)
      {
1630  	if (family < 0 || family >= NPROTO)
1631  		return -1;
      
1633  	net_family_write_lock();
      	net_families[family]=NULL;
1635  	net_family_write_unlock();
1636  	return 0;
      }
      
      
      extern void sk_init(void);
      
      #ifdef CONFIG_WAN_ROUTER
      extern void wanrouter_init(void);
      #endif
      
1646  void __init sock_init(void)
      {
      	int i;
      
      	printk(KERN_INFO "Linux NET4.0 for Linux 2.4\n");
      	printk(KERN_INFO "Based upon Swansea University Computer Society NET3.039\n");
      
      	/*
      	 *	Initialize all address (protocol) families. 
      	 */
      	 
1657  	for (i = 0; i < NPROTO; i++) 
      		net_families[i] = NULL;
      
      	/*
      	 *	Initialize sock SLAB cache.
      	 */
      	 
      	sk_init();
      
      #ifdef SLAB_SKB
      	/*
      	 *	Initialize skbuff SLAB cache 
      	 */
      	skb_init();
      #endif
      
      	/*
      	 *	Wan router layer. 
      	 */
      
      #ifdef CONFIG_WAN_ROUTER	 
      	wanrouter_init();
      #endif
      
      	/*
      	 *	Initialize the protocols module. 
      	 */
      
      	register_filesystem(&sock_fs_type);
      	sock_mnt = kern_mount(&sock_fs_type);
      	/* The real protocol initialization is performed when
      	 *  do_initcalls is run.  
      	 */
      
      
      	/*
      	 * The netlink device handler may be needed early.
      	 */
      
      #ifdef  CONFIG_RTNETLINK
      	rtnetlink_init();
      #endif
      #ifdef CONFIG_NETLINK_DEV
      	init_netlink();
      #endif
      #ifdef CONFIG_NETFILTER
      	netfilter_init();
      #endif
      }
      
1707  int socket_get_info(char *buffer, char **start, off_t offset, int length)
      {
      	int len, cpu;
      	int counter = 0;
      
1712  	for (cpu=0; cpu<smp_num_cpus; cpu++)
      		counter += sockets_in_use[cpu_logical_map(cpu)].counter;
      
      	/* It can be negative, by the way. 8) */
1716  	if (counter < 0)
      		counter = 0;
      
      	len = sprintf(buffer, "sockets: used %d\n", counter);
1720  	if (offset >= len)
      	{
      		*start = buffer;
1723  		return 0;
      	}
      	*start = buffer + offset;
      	len -= offset;
1727  	if (len > length)
      		len = length;
1729  	if (len < 0)
      		len = 0;
1731  	return len;
      }