/* lance.c: An AMD LANCE/PCnet ethernet driver for Linux. */
      /*
      	Written/copyright 1993-1998 by Donald Becker.
      
      	Copyright 1993 United States Government as represented by the
      	Director, National Security Agency.
      	This software may be used and distributed according to the terms
      	of the GNU Public License, incorporated herein by reference.
      
      	This driver is for the Allied Telesis AT1500 and HP J2405A, and should work
      	with most other LANCE-based bus-master (NE2100/NE2500) ethercards.
      
      	The author may be reached as becker@CESDIS.gsfc.nasa.gov, or C/O
      	Center of Excellence in Space Data and Information Sciences
      	   Code 930.5, Goddard Space Flight Center, Greenbelt MD 20771
      
      	Andrey V. Savochkin:
      	- alignment problem with 1.3.* kernel and some minor changes.
      	Thomas Bogendoerfer (tsbogend@bigbug.franken.de):
      	- added support for Linux/Alpha, but removed most of it, because
              it worked only for the PCI chip. 
            - added hook for the 32bit lance driver
            - added PCnetPCI II (79C970A) to chip table
      	Paul Gortmaker (gpg109@rsphy1.anu.edu.au):
      	- hopefully fix above so Linux/Alpha can use ISA cards too.
          8/20/96 Fixed 7990 autoIRQ failure and reversed unneeded alignment -djb
          v1.12 10/27/97 Module support -djb
          v1.14  2/3/98 Module support modified, made PCI support optional -djb
          v1.15 5/27/99 Fixed bug in the cleanup_module(). dev->priv was freed
                        before unregister_netdev() which caused NULL pointer
                        reference later in the chain (in rtnetlink_fill_ifinfo())
                        -- Mika Kuoppala <miku@iki.fi>
          
          Forward ported v1.14 to 2.1.129, merged the PCI and misc changes from
          the 2.1 version of the old driver - Alan Cox
      */
      
      static const char *version = "lance.c:v1.15ac 1999/11/13 dplatt@3do.com, becker@cesdis.gsfc.nasa.gov\n";
      
      #include <linux/module.h>
      #include <linux/kernel.h>
      #include <linux/sched.h>
      #include <linux/string.h>
      #include <linux/ptrace.h>
      #include <linux/errno.h>
      #include <linux/ioport.h>
      #include <linux/malloc.h>
      #include <linux/interrupt.h>
      #include <linux/pci.h>
      #include <linux/init.h>
      #include <asm/bitops.h>
      #include <asm/io.h>
      #include <asm/dma.h>
      
      #include <linux/netdevice.h>
      #include <linux/etherdevice.h>
      #include <linux/skbuff.h>
      
      static unsigned int lance_portlist[] __initdata = { 0x300, 0x320, 0x340, 0x360, 0};
      int lance_probe(struct net_device *dev);
      static int lance_probe1(struct net_device *dev, int ioaddr, int irq, int options);
      
      #ifdef LANCE_DEBUG
      int lance_debug = LANCE_DEBUG;
      #else
      int lance_debug = 1;
      #endif
      
      /*
      				Theory of Operation
      
      I. Board Compatibility
      
      This device driver is designed for the AMD 79C960, the "PCnet-ISA
      single-chip ethernet controller for ISA".  This chip is used in a wide
      variety of boards from vendors such as Allied Telesis, HP, Kingston,
      and Boca.  This driver is also intended to work with older AMD 7990
      designs, such as the NE1500 and NE2100, and newer 79C961.  For convenience,
      I use the name LANCE to refer to all of the AMD chips, even though it properly
      refers only to the original 7990.
      
      II. Board-specific settings
      
      The driver is designed to work the boards that use the faster
      bus-master mode, rather than in shared memory mode.	 (Only older designs
      have on-board buffer memory needed to support the slower shared memory mode.)
      
      Most ISA boards have jumpered settings for the I/O base, IRQ line, and DMA
      channel.  This driver probes the likely base addresses:
      {0x300, 0x320, 0x340, 0x360}.
      After the board is found it generates a DMA-timeout interrupt and uses
      autoIRQ to find the IRQ line.  The DMA channel can be set with the low bits
      of the otherwise-unused dev->mem_start value (aka PARAM1).  If unset it is
      probed for by enabling each free DMA channel in turn and checking if
      initialization succeeds.
      
      The HP-J2405A board is an exception: with this board it is easy to read the
      EEPROM-set values for the base, IRQ, and DMA.  (Of course you must already
      _know_ the base address -- that field is for writing the EEPROM.)
      
      III. Driver operation
      
      IIIa. Ring buffers
      The LANCE uses ring buffers of Tx and Rx descriptors.  Each entry describes
      the base and length of the data buffer, along with status bits.	 The length
      of these buffers is set by LANCE_LOG_{RX,TX}_BUFFERS, which is log_2() of
      the buffer length (rather than being directly the buffer length) for
      implementation ease.  The current values are 2 (Tx) and 4 (Rx), which leads to
      ring sizes of 4 (Tx) and 16 (Rx).  Increasing the number of ring entries
      needlessly uses extra space and reduces the chance that an upper layer will
      be able to reorder queued Tx packets based on priority.	 Decreasing the number
      of entries makes it more difficult to achieve back-to-back packet transmission
      and increases the chance that Rx ring will overflow.  (Consider the worst case
      of receiving back-to-back minimum-sized packets.)
      
      The LANCE has the capability to "chain" both Rx and Tx buffers, but this driver
      statically allocates full-sized (slightly oversized -- PKT_BUF_SZ) buffers to
      avoid the administrative overhead. For the Rx side this avoids dynamically
      allocating full-sized buffers "just in case", at the expense of a
      memory-to-memory data copy for each packet received.  For most systems this
      is a good tradeoff: the Rx buffer will always be in low memory, the copy
      is inexpensive, and it primes the cache for later packet processing.  For Tx
      the buffers are only used when needed as low-memory bounce buffers.
      
      IIIB. 16M memory limitations.
      For the ISA bus master mode all structures used directly by the LANCE,
      the initialization block, Rx and Tx rings, and data buffers, must be
      accessible from the ISA bus, i.e. in the lower 16M of real memory.
      This is a problem for current Linux kernels on >16M machines. The network
      devices are initialized after memory initialization, and the kernel doles out
      memory from the top of memory downward.	 The current solution is to have a
      special network initialization routine that's called before memory
      initialization; this will eventually be generalized for all network devices.
      As mentioned before, low-memory "bounce-buffers" are used when needed.
      
      IIIC. Synchronization
      The driver runs as two independent, single-threaded flows of control.  One
      is the send-packet routine, which enforces single-threaded use by the
      dev->tbusy flag.  The other thread is the interrupt handler, which is single
      threaded by the hardware and other software.
      
      The send packet thread has partial control over the Tx ring and 'dev->tbusy'
      flag.  It sets the tbusy flag whenever it's queuing a Tx packet. If the next
      queue slot is empty, it clears the tbusy flag when finished otherwise it sets
      the 'lp->tx_full' flag.
      
      The interrupt handler has exclusive control over the Rx ring and records stats
      from the Tx ring. (The Tx-done interrupt can't be selectively turned off, so
      we can't avoid the interrupt overhead by having the Tx routine reap the Tx
      stats.)	 After reaping the stats, it marks the queue entry as empty by setting
      the 'base' to zero. Iff the 'lp->tx_full' flag is set, it clears both the
      tx_full and tbusy flags.
      
      */
      
      /* Set the number of Tx and Rx buffers, using Log_2(# buffers).
         Reasonable default values are 16 Tx buffers, and 16 Rx buffers.
         That translates to 4 and 4 (16 == 2^^4).
         This is a compile-time option for efficiency.
         */
      #ifndef LANCE_LOG_TX_BUFFERS
      #define LANCE_LOG_TX_BUFFERS 4
      #define LANCE_LOG_RX_BUFFERS 4
      #endif
      
      #define TX_RING_SIZE			(1 << (LANCE_LOG_TX_BUFFERS))
      #define TX_RING_MOD_MASK		(TX_RING_SIZE - 1)
      #define TX_RING_LEN_BITS		((LANCE_LOG_TX_BUFFERS) << 29)
      
      #define RX_RING_SIZE			(1 << (LANCE_LOG_RX_BUFFERS))
      #define RX_RING_MOD_MASK		(RX_RING_SIZE - 1)
      #define RX_RING_LEN_BITS		((LANCE_LOG_RX_BUFFERS) << 29)
      
      #define PKT_BUF_SZ		1544
      
      /* Offsets from base I/O address. */
      #define LANCE_DATA 0x10
      #define LANCE_ADDR 0x12
      #define LANCE_RESET 0x14
      #define LANCE_BUS_IF 0x16
      #define LANCE_TOTAL_SIZE 0x18
      
      #define TX_TIMEOUT	20
      
      /* The LANCE Rx and Tx ring descriptors. */
      struct lance_rx_head {
      	s32 base;
      	s16 buf_length;			/* This length is 2s complement (negative)! */
      	s16 msg_length;			/* This length is "normal". */
      };
      
      struct lance_tx_head {
      	s32 base;
      	s16 length;				/* Length is 2s complement (negative)! */
      	s16 misc;
      };
      
      /* The LANCE initialization block, described in databook. */
      struct lance_init_block {
      	u16 mode;		/* Pre-set mode (reg. 15) */
      	u8  phys_addr[6]; /* Physical ethernet address */
      	u32 filter[2];			/* Multicast filter (unused). */
      	/* Receive and transmit ring base, along with extra bits. */
      	u32  rx_ring;			/* Tx and Rx ring base pointers */
      	u32  tx_ring;
      };
      
      struct lance_private {
      	/* The Tx and Rx ring entries must be aligned on 8-byte boundaries. */
      	struct lance_rx_head rx_ring[RX_RING_SIZE];
      	struct lance_tx_head tx_ring[TX_RING_SIZE];
      	struct lance_init_block	init_block;
      	const char *name;
      	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
      	struct sk_buff* tx_skbuff[TX_RING_SIZE];
      	/* The addresses of receive-in-place skbuffs. */
      	struct sk_buff* rx_skbuff[RX_RING_SIZE];
      	unsigned long rx_buffs;		/* Address of Rx and Tx buffers. */
      	/* Tx low-memory "bounce buffer" address. */
      	char (*tx_bounce_buffs)[PKT_BUF_SZ];
      	int cur_rx, cur_tx;			/* The next free ring entry */
      	int dirty_rx, dirty_tx;		/* The ring entries to be free()ed. */
      	int dma;
      	struct net_device_stats stats;
      	unsigned char chip_version;	/* See lance_chip_type. */
      	spinlock_t devlock;
      };
      
      #define LANCE_MUST_PAD          0x00000001
      #define LANCE_ENABLE_AUTOSELECT 0x00000002
      #define LANCE_MUST_REINIT_RING  0x00000004
      #define LANCE_MUST_UNRESET      0x00000008
      #define LANCE_HAS_MISSED_FRAME  0x00000010
      
      /* A mapping from the chip ID number to the part number and features.
         These are from the datasheets -- in real life the '970 version
         reportedly has the same ID as the '965. */
      static struct lance_chip_type {
      	int id_number;
      	const char *name;
      	int flags;
      } chip_table[] = {
      	{0x0000, "LANCE 7990",				/* Ancient lance chip.  */
      		LANCE_MUST_PAD + LANCE_MUST_UNRESET},
      	{0x0003, "PCnet/ISA 79C960",		/* 79C960 PCnet/ISA.  */
      		LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
      			LANCE_HAS_MISSED_FRAME},
      	{0x2260, "PCnet/ISA+ 79C961",		/* 79C961 PCnet/ISA+, Plug-n-Play.  */
      		LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
      			LANCE_HAS_MISSED_FRAME},
      	{0x2420, "PCnet/PCI 79C970",		/* 79C970 or 79C974 PCnet-SCSI, PCI. */
      		LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
      			LANCE_HAS_MISSED_FRAME},
      	/* Bug: the PCnet/PCI actually uses the PCnet/VLB ID number, so just call
      		it the PCnet32. */
      	{0x2430, "PCnet32",					/* 79C965 PCnet for VL bus. */
      		LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
      			LANCE_HAS_MISSED_FRAME},
              {0x2621, "PCnet/PCI-II 79C970A",        /* 79C970A PCInetPCI II. */
                      LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
                              LANCE_HAS_MISSED_FRAME},
      	{0x0, 	 "PCnet (unknown)",
      		LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
      			LANCE_HAS_MISSED_FRAME},
      };
      
      enum {OLD_LANCE = 0, PCNET_ISA=1, PCNET_ISAP=2, PCNET_PCI=3, PCNET_VLB=4, PCNET_PCI_II=5, LANCE_UNKNOWN=6};
      
      
      /* Non-zero if lance_probe1() needs to allocate low-memory bounce buffers.
         Assume yes until we know the memory size. */
      static unsigned char lance_need_isa_bounce_buffers = 1;
      
      static int lance_open(struct net_device *dev);
      static int lance_open_fail(struct net_device *dev);
      static void lance_init_ring(struct net_device *dev, int mode);
      static int lance_start_xmit(struct sk_buff *skb, struct net_device *dev);
      static int lance_rx(struct net_device *dev);
      static void lance_interrupt(int irq, void *dev_id, struct pt_regs *regs);
      static int lance_close(struct net_device *dev);
      static struct net_device_stats *lance_get_stats(struct net_device *dev);
      static void set_multicast_list(struct net_device *dev);
      static void lance_tx_timeout (struct net_device *dev);
      
      
      
      #ifdef MODULE
      #define MAX_CARDS		8	/* Max number of interfaces (cards) per module */
      
      static struct net_device dev_lance[MAX_CARDS];
      static int io[MAX_CARDS];
      static int dma[MAX_CARDS];
      static int irq[MAX_CARDS];
      
      MODULE_PARM(io, "1-" __MODULE_STRING(MAX_CARDS) "i");
      MODULE_PARM(dma, "1-" __MODULE_STRING(MAX_CARDS) "i");
      MODULE_PARM(irq, "1-" __MODULE_STRING(MAX_CARDS) "i");
      
      int init_module(void)
      {
      	int this_dev, found = 0;
      
      	for (this_dev = 0; this_dev < MAX_CARDS; this_dev++) {
      		struct net_device *dev = &dev_lance[this_dev];
      		dev->irq = irq[this_dev];
      		dev->base_addr = io[this_dev];
      		dev->dma = dma[this_dev];
      		dev->init = lance_probe;
      		if (io[this_dev] == 0)  {
      			if (this_dev != 0) break; /* only complain once */
      			printk(KERN_NOTICE "lance.c: Module autoprobing not allowed. Append \"io=0xNNN\" value(s).\n");
      			return -EPERM;
      		}
      		if (register_netdev(dev) != 0) {
      			printk(KERN_WARNING "lance.c: No PCnet/LANCE card found (i/o = 0x%x).\n", io[this_dev]);
      			if (found != 0) return 0;	/* Got at least one. */
      			return -ENXIO;
      		}
      		found++;
      	}
      
      	return 0;
      }
      
      void cleanup_module(void)
      {
      	int this_dev;
      
      	for (this_dev = 0; this_dev < MAX_CARDS; this_dev++) {
      		struct net_device *dev = &dev_lance[this_dev];
      		if (dev->priv != NULL) {
      			unregister_netdev(dev);	
      			free_dma(dev->dma);
      			release_region(dev->base_addr, LANCE_TOTAL_SIZE);
      			kfree(dev->priv);
      			dev->priv = NULL;
      		}
      	}
      }
      #endif /* MODULE */
      
      /* Starting in v2.1.*, the LANCE/PCnet probe is now similar to the other
         board probes now that kmalloc() can allocate ISA DMA-able regions.
         This also allows the LANCE driver to be used as a module.
         */
 346  int lance_probe(struct net_device *dev)
      {
      	int *port, result;
      
 350  	if (high_memory <= phys_to_virt(16*1024*1024))
      		lance_need_isa_bounce_buffers = 0;
      
 353  	for (port = lance_portlist; *port; port++) {
      		int ioaddr = *port;
      
 356  		if ( check_region(ioaddr, LANCE_TOTAL_SIZE) == 0) {
      			/* Detect "normal" 0x57 0x57 and the NI6510EB 0x52 0x44
      			   signatures w/ minimal I/O reads */
      			char offset15, offset14 = inb(ioaddr + 14);
      			
      			if ((offset14 == 0x52 || offset14 == 0x57) &&
 362  				((offset15 = inb(ioaddr + 15)) == 0x57 || offset15 == 0x44)) {
      				result = lance_probe1(dev, ioaddr, 0, 0);
 364  				if ( !result ) return 0;
      			}
      		}
      	}
 368  	return -ENODEV;
      }
      
 371  static int __init lance_probe1(struct net_device *dev, int ioaddr, int irq, int options)
      {
      	struct lance_private *lp;
      	short dma_channels;					/* Mark spuriously-busy DMA channels */
      	int i, reset_val, lance_version;
      	const char *chipname;
      	/* Flags for specific chips or boards. */
      	unsigned char hpJ2405A = 0;			/* HP ISA adaptor */
      	int hp_builtin = 0;					/* HP on-board ethernet. */
      	static int did_version = 0;			/* Already printed version info. */
      	unsigned long flags;
      
      	/* First we look for special cases.
      	   Check for HP's on-board ethernet by looking for 'HP' in the BIOS.
      	   There are two HP versions, check the BIOS for the configuration port.
      	   This method provided by L. Julliard, Laurent_Julliard@grenoble.hp.com.
      	   */
 388  	if (isa_readw(0x000f0102) == 0x5048)  {
      		static const short ioaddr_table[] = { 0x300, 0x320, 0x340, 0x360};
      		int hp_port = (isa_readl(0x000f00f1) & 1)  ? 0x499 : 0x99;
      		/* We can have boards other than the built-in!  Verify this is on-board. */
      		if ((inb(hp_port) & 0xc0) == 0x80
 393  			&& ioaddr_table[inb(hp_port) & 3] == ioaddr)
      			hp_builtin = hp_port;
      	}
      	/* We also recognize the HP Vectra on-board here, but check below. */
      	hpJ2405A = (inb(ioaddr) == 0x08 && inb(ioaddr+1) == 0x00
      				&& inb(ioaddr+2) == 0x09);
      
      	/* Reset the LANCE.	 */
      	reset_val = inw(ioaddr+LANCE_RESET); /* Reset the LANCE */
      
      	/* The Un-Reset needed is only needed for the real NE2100, and will
      	   confuse the HP board. */
 405  	if (!hpJ2405A)
      		outw(reset_val, ioaddr+LANCE_RESET);
      
      	outw(0x0000, ioaddr+LANCE_ADDR); /* Switch to window 0 */
 409  	if (inw(ioaddr+LANCE_DATA) != 0x0004)
 410  		return -ENODEV;
      
      	/* Get the version of the chip. */
      	outw(88, ioaddr+LANCE_ADDR);
 414  	if (inw(ioaddr+LANCE_ADDR) != 88) {
      		lance_version = 0;
 416  	} else {							/* Good, it's a newer chip. */
      		int chip_version = inw(ioaddr+LANCE_DATA);
      		outw(89, ioaddr+LANCE_ADDR);
      		chip_version |= inw(ioaddr+LANCE_DATA) << 16;
 420  		if (lance_debug > 2)
      			printk("  LANCE chip version is %#x.\n", chip_version);
 422  		if ((chip_version & 0xfff) != 0x003)
 423  			return -ENODEV;
      		chip_version = (chip_version >> 12) & 0xffff;
 425  		for (lance_version = 1; chip_table[lance_version].id_number; lance_version++) {
 426  			if (chip_table[lance_version].id_number == chip_version)
 427  				break;
      		}
      	}
      
      	/* We can't use init_etherdev() to allocate dev->priv because it must
      	   a ISA DMA-able region. */
      	dev = init_etherdev(dev, 0);
 434  	if (!dev)
 435  		return -ENOMEM;
 436  	SET_MODULE_OWNER(dev);
      	dev->open = lance_open_fail;
      	chipname = chip_table[lance_version].name;
      	printk("%s: %s at %#3x,", dev->name, chipname, ioaddr);
      
      	/* There is a 16 byte station address PROM at the base address.
      	   The first six bytes are the station address. */
 443  	for (i = 0; i < 6; i++)
      		printk(" %2.2x", dev->dev_addr[i] = inb(ioaddr + i));
      
      	dev->base_addr = ioaddr;
      	request_region(ioaddr, LANCE_TOTAL_SIZE, chip_table[lance_version].name);
      
      	/* Make certain the data structures used by the LANCE are aligned and DMAble. */
      		
      	lp = (struct lance_private *)(((unsigned long)kmalloc(sizeof(*lp)+7,
      										   GFP_DMA | GFP_KERNEL)+7) & ~7);
 453  	if(lp==NULL)
 454  		return -ENODEV;
 455  	if (lance_debug > 6) printk(" (#0x%05lx)", (unsigned long)lp);
      	memset(lp, 0, sizeof(*lp));
      	dev->priv = lp;
      	lp->name = chipname;
      	lp->rx_buffs = (unsigned long)kmalloc(PKT_BUF_SZ*RX_RING_SIZE,
      										  GFP_DMA | GFP_KERNEL);
 461  	if (lance_need_isa_bounce_buffers)
      		lp->tx_bounce_buffs = kmalloc(PKT_BUF_SZ*TX_RING_SIZE,
      									  GFP_DMA | GFP_KERNEL);
 464  	else
      		lp->tx_bounce_buffs = NULL;
      
      	lp->chip_version = lance_version;
      	lp->devlock = SPIN_LOCK_UNLOCKED;
      
      	lp->init_block.mode = 0x0003;		/* Disable Rx and Tx. */
 471  	for (i = 0; i < 6; i++)
      		lp->init_block.phys_addr[i] = dev->dev_addr[i];
      	lp->init_block.filter[0] = 0x00000000;
      	lp->init_block.filter[1] = 0x00000000;
      	lp->init_block.rx_ring = ((u32)virt_to_bus(lp->rx_ring) & 0xffffff) | RX_RING_LEN_BITS;
      	lp->init_block.tx_ring = ((u32)virt_to_bus(lp->tx_ring) & 0xffffff) | TX_RING_LEN_BITS;
      
      	outw(0x0001, ioaddr+LANCE_ADDR);
      	inw(ioaddr+LANCE_ADDR);
      	outw((short) (u32) virt_to_bus(&lp->init_block), ioaddr+LANCE_DATA);
      	outw(0x0002, ioaddr+LANCE_ADDR);
      	inw(ioaddr+LANCE_ADDR);
      	outw(((u32)virt_to_bus(&lp->init_block)) >> 16, ioaddr+LANCE_DATA);
      	outw(0x0000, ioaddr+LANCE_ADDR);
      	inw(ioaddr+LANCE_ADDR);
      
 487  	if (irq) {					/* Set iff PCI card. */
      		dev->dma = 4;			/* Native bus-master, no DMA channel needed. */
      		dev->irq = irq;
 490  	} else if (hp_builtin) {
      		static const char dma_tbl[4] = {3, 5, 6, 0};
      		static const char irq_tbl[4] = {3, 4, 5, 9};
      		unsigned char port_val = inb(hp_builtin);
      		dev->dma = dma_tbl[(port_val >> 4) & 3];
      		dev->irq = irq_tbl[(port_val >> 2) & 3];
      		printk(" HP Vectra IRQ %d DMA %d.\n", dev->irq, dev->dma);
 497  	} else if (hpJ2405A) {
      		static const char dma_tbl[4] = {3, 5, 6, 7};
      		static const char irq_tbl[8] = {3, 4, 5, 9, 10, 11, 12, 15};
      		short reset_val = inw(ioaddr+LANCE_RESET);
      		dev->dma = dma_tbl[(reset_val >> 2) & 3];
      		dev->irq = irq_tbl[(reset_val >> 4) & 7];
      		printk(" HP J2405A IRQ %d DMA %d.\n", dev->irq, dev->dma);
 504  	} else if (lance_version == PCNET_ISAP) {		/* The plug-n-play version. */
      		short bus_info;
      		outw(8, ioaddr+LANCE_ADDR);
      		bus_info = inw(ioaddr+LANCE_BUS_IF);
      		dev->dma = bus_info & 0x07;
      		dev->irq = (bus_info >> 4) & 0x0F;
 510  	} else {
      		/* The DMA channel may be passed in PARAM1. */
 512  		if (dev->mem_start & 0x07)
      			dev->dma = dev->mem_start & 0x07;
      	}
      
 516  	if (dev->dma == 0) {
      		/* Read the DMA channel status register, so that we can avoid
      		   stuck DMA channels in the DMA detection below. */
      		dma_channels = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) |
      			(inb(DMA2_STAT_REG) & 0xf0);
      	}
 522  	if (dev->irq >= 2)
      		printk(" assigned IRQ %d", dev->irq);
 524  	else if (lance_version != 0)  {	/* 7990 boards need DMA detection first. */
      		/* To auto-IRQ we enable the initialization-done and DMA error
      		   interrupts. For ISA boards we get a DMA error, but VLB and PCI
      		   boards will work. */
      		autoirq_setup(0);
      
      		/* Trigger an initialization just for the interrupt. */
      		outw(0x0041, ioaddr+LANCE_DATA);
      
      		dev->irq = autoirq_report(2);
 534  		if (dev->irq)
      			printk(", probed IRQ %d", dev->irq);
 536  		else {
      			printk(", failed to detect IRQ line.\n");
 538  			return -ENODEV;
      		}
      
      		/* Check for the initialization done bit, 0x0100, which means
      		   that we don't need a DMA channel. */
 543  		if (inw(ioaddr+LANCE_DATA) & 0x0100)
      			dev->dma = 4;
      	}
      
 547  	if (dev->dma == 4) {
      		printk(", no DMA needed.\n");
 549  	} else if (dev->dma) {
 550  		if (request_dma(dev->dma, chipname)) {
      			printk("DMA %d allocation failed.\n", dev->dma);
 552  			return -ENODEV;
 553  		} else
      			printk(", assigned DMA %d.\n", dev->dma);
 555  	} else {			/* OK, we have to auto-DMA. */
 556  		for (i = 0; i < 4; i++) {
      			static const char dmas[] = { 5, 6, 7, 3 };
      			int dma = dmas[i];
      			int boguscnt;
      
      			/* Don't enable a permanently busy DMA channel, or the machine
      			   will hang. */
 563  			if (test_bit(dma, &dma_channels))
 564  				continue;
      			outw(0x7f04, ioaddr+LANCE_DATA); /* Clear the memory error bits. */
 566  			if (request_dma(dma, chipname))
 567  				continue;
      				
      			flags=claim_dma_lock();
      			set_dma_mode(dma, DMA_MODE_CASCADE);
      			enable_dma(dma);
      			release_dma_lock(flags);
      
      			/* Trigger an initialization. */
      			outw(0x0001, ioaddr+LANCE_DATA);
 576  			for (boguscnt = 100; boguscnt > 0; --boguscnt)
 577  				if (inw(ioaddr+LANCE_DATA) & 0x0900)
 578  					break;
 579  			if (inw(ioaddr+LANCE_DATA) & 0x0100) {
      				dev->dma = dma;
      				printk(", DMA %d.\n", dev->dma);
 582  				break;
 583  			} else {
      				flags=claim_dma_lock();
      				disable_dma(dma);
      				release_dma_lock(flags);
      				free_dma(dma);
      			}
      		}
 590  		if (i == 4) {			/* Failure: bail. */
      			printk("DMA detection failed.\n");
 592  			return -ENODEV;
      		}
      	}
      
 596  	if (lance_version == 0 && dev->irq == 0) {
      		/* We may auto-IRQ now that we have a DMA channel. */
      		/* Trigger an initialization just for the interrupt. */
      		autoirq_setup(0);
      		outw(0x0041, ioaddr+LANCE_DATA);
      
      		dev->irq = autoirq_report(4);
 603  		if (dev->irq == 0) {
      			printk("  Failed to detect the 7990 IRQ line.\n");
 605  			return -ENODEV;
      		}
      		printk("  Auto-IRQ detected IRQ%d.\n", dev->irq);
      	}
      
 610  	if (chip_table[lp->chip_version].flags & LANCE_ENABLE_AUTOSELECT) {
      		/* Turn on auto-select of media (10baseT or BNC) so that the user
      		   can watch the LEDs even if the board isn't opened. */
      		outw(0x0002, ioaddr+LANCE_ADDR);
      		/* Don't touch 10base2 power bit. */
      		outw(inw(ioaddr+LANCE_BUS_IF) | 0x0002, ioaddr+LANCE_BUS_IF);
      	}
      
 618  	if (lance_debug > 0  &&  did_version++ == 0)
      		printk(version);
      
      	/* The LANCE-specific entries in the device structure. */
      	dev->open = lance_open;
      	dev->hard_start_xmit = lance_start_xmit;
      	dev->stop = lance_close;
      	dev->get_stats = lance_get_stats;
      	dev->set_multicast_list = set_multicast_list;
      	dev->tx_timeout = lance_tx_timeout;
      	dev->watchdog_timeo = TX_TIMEOUT;
      
 630  	return 0;
      }
      
      static int
 634  lance_open_fail(struct net_device *dev)
      {
 636  	return -ENODEV;
      }
      
      
      
      static int
 642  lance_open(struct net_device *dev)
      {
      	struct lance_private *lp = dev->priv;
      	int ioaddr = dev->base_addr;
      	int i;
      
      	if (dev->irq == 0 ||
 649  		request_irq(dev->irq, &lance_interrupt, 0, lp->name, dev)) {
 650  		return -EAGAIN;
      	}
      
      	/* We used to allocate DMA here, but that was silly.
      	   DMA lines can't be shared!  We now permanently allocate them. */
      
      	/* Reset the LANCE */
      	inw(ioaddr+LANCE_RESET);
      
      	/* The DMA controller is used as a no-operation slave, "cascade mode". */
 660  	if (dev->dma != 4) {
      		unsigned long flags=claim_dma_lock();
      		enable_dma(dev->dma);
      		set_dma_mode(dev->dma, DMA_MODE_CASCADE);
      		release_dma_lock(flags);
      	}
      
      	/* Un-Reset the LANCE, needed only for the NE2100. */
 668  	if (chip_table[lp->chip_version].flags & LANCE_MUST_UNRESET)
      		outw(0, ioaddr+LANCE_RESET);
      
 671  	if (chip_table[lp->chip_version].flags & LANCE_ENABLE_AUTOSELECT) {
      		/* This is 79C960-specific: Turn on auto-select of media (AUI, BNC). */
      		outw(0x0002, ioaddr+LANCE_ADDR);
      		/* Only touch autoselect bit. */
      		outw(inw(ioaddr+LANCE_BUS_IF) | 0x0002, ioaddr+LANCE_BUS_IF);
       	}
      
 678  	if (lance_debug > 1)
      		printk("%s: lance_open() irq %d dma %d tx/rx rings %#x/%#x init %#x.\n",
      			   dev->name, dev->irq, dev->dma,
      		           (u32) virt_to_bus(lp->tx_ring),
      		           (u32) virt_to_bus(lp->rx_ring),
      			   (u32) virt_to_bus(&lp->init_block));
      
      	lance_init_ring(dev, GFP_KERNEL);
      	/* Re-initialize the LANCE, and start it when done. */
      	outw(0x0001, ioaddr+LANCE_ADDR);
      	outw((short) (u32) virt_to_bus(&lp->init_block), ioaddr+LANCE_DATA);
      	outw(0x0002, ioaddr+LANCE_ADDR);
      	outw(((u32)virt_to_bus(&lp->init_block)) >> 16, ioaddr+LANCE_DATA);
      
      	outw(0x0004, ioaddr+LANCE_ADDR);
      	outw(0x0915, ioaddr+LANCE_DATA);
      
      	outw(0x0000, ioaddr+LANCE_ADDR);
      	outw(0x0001, ioaddr+LANCE_DATA);
      
      	netif_start_queue (dev);
      
      	i = 0;
 701  	while (i++ < 100)
 702  		if (inw(ioaddr+LANCE_DATA) & 0x0100)
 703  			break;
      	/* 
      	 * We used to clear the InitDone bit, 0x0100, here but Mark Stockton
      	 * reports that doing so triggers a bug in the '974.
      	 */
       	outw(0x0042, ioaddr+LANCE_DATA);
      
 710  	if (lance_debug > 2)
      		printk("%s: LANCE open after %d ticks, init block %#x csr0 %4.4x.\n",
      			   dev->name, i, (u32) virt_to_bus(&lp->init_block), inw(ioaddr+LANCE_DATA));
      
 714  	return 0;					/* Always succeed */
      }
      
      /* The LANCE has been halted for one reason or another (busmaster memory
         arbitration error, Tx FIFO underflow, driver stopped it to reconfigure,
         etc.).  Modern LANCE variants always reload their ring-buffer
         configuration when restarted, so we must reinitialize our ring
         context before restarting.  As part of this reinitialization,
         find all packets still on the Tx ring and pretend that they had been
         sent (in effect, drop the packets on the floor) - the higher-level
         protocols will time out and retransmit.  It'd be better to shuffle
         these skbs to a temp list and then actually re-Tx them after
         restarting the chip, but I'm too lazy to do so right now.  dplatt@3do.com
      */
      
      static void 
 730  lance_purge_ring(struct net_device *dev)
      {
      	struct lance_private *lp = dev->priv;
      	int i;
      
      	/* Free all the skbuffs in the Rx and Tx queues. */
 736  	for (i = 0; i < RX_RING_SIZE; i++) {
      		struct sk_buff *skb = lp->rx_skbuff[i];
      		lp->rx_skbuff[i] = 0;
      		lp->rx_ring[i].base = 0;		/* Not owned by LANCE chip. */
 740  		if (skb)
      			dev_kfree_skb_any(skb);
      	}
 743  	for (i = 0; i < TX_RING_SIZE; i++) {
 744  		if (lp->tx_skbuff[i]) {
      			dev_kfree_skb_any(lp->tx_skbuff[i]);
      			lp->tx_skbuff[i] = NULL;
      		}
      	}
      }
      
      
      /* Initialize the LANCE Rx and Tx rings. */
      static void
 754  lance_init_ring(struct net_device *dev, int gfp)
      {
      	struct lance_private *lp = dev->priv;
      	int i;
      
      	lp->cur_rx = lp->cur_tx = 0;
      	lp->dirty_rx = lp->dirty_tx = 0;
      
 762  	for (i = 0; i < RX_RING_SIZE; i++) {
      		struct sk_buff *skb;
      		void *rx_buff;
      
      		skb = alloc_skb(PKT_BUF_SZ, GFP_DMA | gfp);
      		lp->rx_skbuff[i] = skb;
 768  		if (skb) {
      			skb->dev = dev;
      			rx_buff = skb->tail;
 771  		} else
      			rx_buff = kmalloc(PKT_BUF_SZ, GFP_DMA | gfp);
 773  		if (rx_buff == NULL)
      			lp->rx_ring[i].base = 0;
 775  		else
      			lp->rx_ring[i].base = (u32)virt_to_bus(rx_buff) | 0x80000000;
      		lp->rx_ring[i].buf_length = -PKT_BUF_SZ;
      	}
      	/* The Tx buffer address is filled in as needed, but we do need to clear
      	   the upper ownership bit. */
 781  	for (i = 0; i < TX_RING_SIZE; i++) {
      		lp->tx_skbuff[i] = 0;
      		lp->tx_ring[i].base = 0;
      	}
      
      	lp->init_block.mode = 0x0000;
 787  	for (i = 0; i < 6; i++)
      		lp->init_block.phys_addr[i] = dev->dev_addr[i];
      	lp->init_block.filter[0] = 0x00000000;
      	lp->init_block.filter[1] = 0x00000000;
      	lp->init_block.rx_ring = ((u32)virt_to_bus(lp->rx_ring) & 0xffffff) | RX_RING_LEN_BITS;
      	lp->init_block.tx_ring = ((u32)virt_to_bus(lp->tx_ring) & 0xffffff) | TX_RING_LEN_BITS;
      }
      
      static void
 796  lance_restart(struct net_device *dev, unsigned int csr0_bits, int must_reinit)
      {
      	struct lance_private *lp = dev->priv;
      
      	if (must_reinit ||
 801  		(chip_table[lp->chip_version].flags & LANCE_MUST_REINIT_RING)) {
      		lance_purge_ring(dev);
      		lance_init_ring(dev, GFP_ATOMIC);
      	}
      	outw(0x0000,    dev->base_addr + LANCE_ADDR);
      	outw(csr0_bits, dev->base_addr + LANCE_DATA);
      }
      
      
 810  static void lance_tx_timeout (struct net_device *dev)
      {
      	struct lance_private *lp = (struct lance_private *) dev->priv;
      	int ioaddr = dev->base_addr;
      
      	outw (0, ioaddr + LANCE_ADDR);
      	printk ("%s: transmit timed out, status %4.4x, resetting.\n",
      		dev->name, inw (ioaddr + LANCE_DATA));
      	outw (0x0004, ioaddr + LANCE_DATA);
      	lp->stats.tx_errors++;
      #ifndef final_version
 821  	if (lance_debug > 3) {
      		int i;
      		printk (" Ring data dump: dirty_tx %d cur_tx %d%s cur_rx %d.",
      		  lp->dirty_tx, lp->cur_tx, netif_queue_stopped(dev) ? " (full)" : "",
      			lp->cur_rx);
 826  		for (i = 0; i < RX_RING_SIZE; i++)
      			printk ("%s %08x %04x %04x", i & 0x3 ? "" : "\n ",
      			 lp->rx_ring[i].base, -lp->rx_ring[i].buf_length,
      				lp->rx_ring[i].msg_length);
 830  		for (i = 0; i < TX_RING_SIZE; i++)
      			printk ("%s %08x %04x %04x", i & 0x3 ? "" : "\n ",
      			     lp->tx_ring[i].base, -lp->tx_ring[i].length,
      				lp->tx_ring[i].misc);
      		printk ("\n");
      	}
      #endif
      	lance_restart (dev, 0x0043, 1);
      
      	dev->trans_start = jiffies;
      	netif_start_queue (dev);
      }
      
      
 844  static int lance_start_xmit(struct sk_buff *skb, struct net_device *dev)
      {
      	struct lance_private *lp = dev->priv;
      	int ioaddr = dev->base_addr;
      	int entry;
      	unsigned long flags;
      
 851  	spin_lock_irqsave(&lp->devlock, flags);
      
 853  	if (lance_debug > 3) {
      		outw(0x0000, ioaddr+LANCE_ADDR);
      		printk("%s: lance_start_xmit() called, csr0 %4.4x.\n", dev->name,
      			   inw(ioaddr+LANCE_DATA));
      		outw(0x0000, ioaddr+LANCE_DATA);
      	}
      
      	/* Fill in a Tx ring entry */
      
      	/* Mask to ring buffer boundary. */
      	entry = lp->cur_tx & TX_RING_MOD_MASK;
      
      	/* Caution: the write order is important here, set the base address
      	   with the "ownership" bits last. */
      
      	/* The old LANCE chips doesn't automatically pad buffers to min. size. */
 869  	if (chip_table[lp->chip_version].flags & LANCE_MUST_PAD) {
      		lp->tx_ring[entry].length =
      			-(ETH_ZLEN < skb->len ? skb->len : ETH_ZLEN);
 872  	} else
      		lp->tx_ring[entry].length = -skb->len;
      
      	lp->tx_ring[entry].misc = 0x0000;
      
      	/* If any part of this buffer is >16M we must copy it to a low-memory
      	   buffer. */
 879  	if ((u32)virt_to_bus(skb->data) + skb->len > 0x01000000) {
 880  		if (lance_debug > 5)
      			printk("%s: bouncing a high-memory packet (%#x).\n",
      				   dev->name, (u32)virt_to_bus(skb->data));
      		memcpy(&lp->tx_bounce_buffs[entry], skb->data, skb->len);
      		lp->tx_ring[entry].base =
      			((u32)virt_to_bus((lp->tx_bounce_buffs + entry)) & 0xffffff) | 0x83000000;
      		dev_kfree_skb(skb);
 887  	} else {
      		lp->tx_skbuff[entry] = skb;
      		lp->tx_ring[entry].base = ((u32)virt_to_bus(skb->data) & 0xffffff) | 0x83000000;
      	}
      	lp->cur_tx++;
      	lp->stats.tx_bytes += skb->len;
      
      	/* Trigger an immediate send poll. */
      	outw(0x0000, ioaddr+LANCE_ADDR);
      	outw(0x0048, ioaddr+LANCE_DATA);
      
      	dev->trans_start = jiffies;
      
 900  	if ((lp->cur_tx - lp->dirty_tx) >= TX_RING_SIZE)
      		netif_stop_queue(dev);
      
 903  	spin_unlock_irqrestore(&lp->devlock, flags);
 904  	return 0;
      }
      
      /* The LANCE interrupt handler. */
      static void
 909  lance_interrupt(int irq, void *dev_id, struct pt_regs * regs)
      {
      	struct net_device *dev = dev_id;
      	struct lance_private *lp;
      	int csr0, ioaddr, boguscnt=10;
      	int must_restart;
      
 916  	if (dev == NULL) {
      		printk ("lance_interrupt(): irq %d for unknown device.\n", irq);
 918  		return;
      	}
      
      	ioaddr = dev->base_addr;
      	lp = dev->priv;
      	
      	spin_lock (&lp->devlock);
      
      	outw(0x00, dev->base_addr + LANCE_ADDR);
      	while ((csr0 = inw(dev->base_addr + LANCE_DATA)) & 0x8600
 928  		   && --boguscnt >= 0) {
      		/* Acknowledge all of the current interrupt sources ASAP. */
      		outw(csr0 & ~0x004f, dev->base_addr + LANCE_DATA);
      
      		must_restart = 0;
      
 934  		if (lance_debug > 5)
      			printk("%s: interrupt  csr0=%#2.2x new csr=%#2.2x.\n",
      				   dev->name, csr0, inw(dev->base_addr + LANCE_DATA));
      
 938  		if (csr0 & 0x0400)			/* Rx interrupt */
      			lance_rx(dev);
      
 941  		if (csr0 & 0x0200) {		/* Tx-done interrupt */
      			int dirty_tx = lp->dirty_tx;
      
 944  			while (dirty_tx < lp->cur_tx) {
      				int entry = dirty_tx & TX_RING_MOD_MASK;
      				int status = lp->tx_ring[entry].base;
      			
 948  				if (status < 0)
 949  					break;			/* It still hasn't been Txed */
      
      				lp->tx_ring[entry].base = 0;
      
 953  				if (status & 0x40000000) {
      					/* There was an major error, log it. */
      					int err_status = lp->tx_ring[entry].misc;
      					lp->stats.tx_errors++;
 957  					if (err_status & 0x0400) lp->stats.tx_aborted_errors++;
 958  					if (err_status & 0x0800) lp->stats.tx_carrier_errors++;
 959  					if (err_status & 0x1000) lp->stats.tx_window_errors++;
 960  					if (err_status & 0x4000) {
      						/* Ackk!  On FIFO errors the Tx unit is turned off! */
      						lp->stats.tx_fifo_errors++;
      						/* Remove this verbosity later! */
      						printk("%s: Tx FIFO error! Status %4.4x.\n",
      							   dev->name, csr0);
      						/* Restart the chip. */
      						must_restart = 1;
      					}
 969  				} else {
 970  					if (status & 0x18000000)
      						lp->stats.collisions++;
      					lp->stats.tx_packets++;
      				}
      
      				/* We must free the original skb if it's not a data-only copy
      				   in the bounce buffer. */
 977  				if (lp->tx_skbuff[entry]) {
      					dev_kfree_skb_irq(lp->tx_skbuff[entry]);
      					lp->tx_skbuff[entry] = 0;
      				}
      				dirty_tx++;
      			}
      
      #ifndef final_version
 985  			if (lp->cur_tx - dirty_tx >= TX_RING_SIZE) {
      				printk("out-of-sync dirty pointer, %d vs. %d, full=%s.\n",
      					   dirty_tx, lp->cur_tx,
      					   netif_queue_stopped(dev) ? "yes" : "no");
      				dirty_tx += TX_RING_SIZE;
      			}
      #endif
      
      			/* if the ring is no longer full, accept more packets */
      			if (netif_queue_stopped(dev) &&
 995  			    dirty_tx > lp->cur_tx - TX_RING_SIZE + 2)
      				netif_wake_queue (dev);
      
      			lp->dirty_tx = dirty_tx;
      		}
      
      		/* Log misc errors. */
1002  		if (csr0 & 0x4000) lp->stats.tx_errors++; /* Tx babble. */
1003  		if (csr0 & 0x1000) lp->stats.rx_errors++; /* Missed a Rx frame. */
1004  		if (csr0 & 0x0800) {
      			printk("%s: Bus master arbitration failure, status %4.4x.\n",
      				   dev->name, csr0);
      			/* Restart the chip. */
      			must_restart = 1;
      		}
      
1011  		if (must_restart) {
      			/* stop the chip to clear the error condition, then restart */
      			outw(0x0000, dev->base_addr + LANCE_ADDR);
      			outw(0x0004, dev->base_addr + LANCE_DATA);
      			lance_restart(dev, 0x0002, 0);
      		}
      	}
      
      	/* Clear any other interrupt, and set interrupt enable. */
      	outw(0x0000, dev->base_addr + LANCE_ADDR);
      	outw(0x7940, dev->base_addr + LANCE_DATA);
      
1023  	if (lance_debug > 4)
      		printk("%s: exiting interrupt, csr%d=%#4.4x.\n",
      			   dev->name, inw(ioaddr + LANCE_ADDR),
      			   inw(dev->base_addr + LANCE_DATA));
      
1028  	spin_unlock (&lp->devlock);
      }
      
      static int
1032  lance_rx(struct net_device *dev)
      {
      	struct lance_private *lp = dev->priv;
      	int entry = lp->cur_rx & RX_RING_MOD_MASK;
      	int i;
      		
      	/* If we own the next entry, it's a new packet. Send it up. */
1039  	while (lp->rx_ring[entry].base >= 0) {
      		int status = lp->rx_ring[entry].base >> 24;
      
1042  		if (status != 0x03) {			/* There was an error. */
      			/* There is a tricky error noted by John Murphy,
      			   <murf@perftech.com> to Russ Nelson: Even with full-sized
      			   buffers it's possible for a jabber packet to use two
      			   buffers, with only the last correctly noting the error. */
1047  			if (status & 0x01)	/* Only count a general error at the */
      				lp->stats.rx_errors++; /* end of a packet.*/
1049  			if (status & 0x20) lp->stats.rx_frame_errors++;
1050  			if (status & 0x10) lp->stats.rx_over_errors++;
1051  			if (status & 0x08) lp->stats.rx_crc_errors++;
1052  			if (status & 0x04) lp->stats.rx_fifo_errors++;
      			lp->rx_ring[entry].base &= 0x03ffffff;
      		}
1055  		else 
      		{
      			/* Malloc up new buffer, compatible with net3. */
      			short pkt_len = (lp->rx_ring[entry].msg_length & 0xfff)-4;
      			struct sk_buff *skb;
      			
1061  			if(pkt_len<60)
      			{
      				printk("%s: Runt packet!\n",dev->name);
      				lp->stats.rx_errors++;
      			}
1066  			else
      			{
      				skb = dev_alloc_skb(pkt_len+2);
1069  				if (skb == NULL) 
      				{
      					printk("%s: Memory squeeze, deferring packet.\n", dev->name);
1072  					for (i=0; i < RX_RING_SIZE; i++)
1073  						if (lp->rx_ring[(entry+i) & RX_RING_MOD_MASK].base < 0)
1074  							break;
      
1076  					if (i > RX_RING_SIZE -2) 
      					{
      						lp->stats.rx_dropped++;
      						lp->rx_ring[entry].base |= 0x80000000;
      						lp->cur_rx++;
      					}
1082  					break;
      				}
      				skb->dev = dev;
      				skb_reserve(skb,2);	/* 16 byte align */
      				skb_put(skb,pkt_len);	/* Make room */
      				eth_copy_and_sum(skb,
      					(unsigned char *)bus_to_virt((lp->rx_ring[entry].base & 0x00ffffff)),
      					pkt_len,0);
      				lp->stats.rx_bytes+=skb->len;
      				skb->protocol=eth_type_trans(skb,dev);
      				lp->stats.rx_packets++;
      				netif_rx(skb);
      			}
      		}
      		/* The docs say that the buffer length isn't touched, but Andrew Boyd
      		   of QNX reports that some revs of the 79C965 clear it. */
      		lp->rx_ring[entry].buf_length = -PKT_BUF_SZ;
      		lp->rx_ring[entry].base |= 0x80000000;
      		entry = (++lp->cur_rx) & RX_RING_MOD_MASK;
      	}
      
      	/* We should check that at least two ring entries are free.	 If not,
      	   we should free one and mark stats->rx_dropped++. */
      
1106  	return 0;
      }
      
      static int
1110  lance_close(struct net_device *dev)
      {
      	int ioaddr = dev->base_addr;
      	struct lance_private *lp = dev->priv;
      
      	netif_stop_queue (dev);
      
1117  	if (chip_table[lp->chip_version].flags & LANCE_HAS_MISSED_FRAME) {
      		outw(112, ioaddr+LANCE_ADDR);
      		lp->stats.rx_missed_errors = inw(ioaddr+LANCE_DATA);
      	}
      	outw(0, ioaddr+LANCE_ADDR);
      
1123  	if (lance_debug > 1)
      		printk("%s: Shutting down ethercard, status was %2.2x.\n",
      			   dev->name, inw(ioaddr+LANCE_DATA));
      
      	/* We stop the LANCE here -- it occasionally polls
      	   memory if we don't. */
      	outw(0x0004, ioaddr+LANCE_DATA);
      
1131  	if (dev->dma != 4)
      	{
      		unsigned long flags=claim_dma_lock();
      		disable_dma(dev->dma);
      		release_dma_lock(flags);
      	}
      	free_irq(dev->irq, dev);
      
      	lance_purge_ring(dev);
      
1141  	return 0;
      }
      
1144  static struct net_device_stats *lance_get_stats(struct net_device *dev)
      {
      	struct lance_private *lp = dev->priv;
      
1148  	if (chip_table[lp->chip_version].flags & LANCE_HAS_MISSED_FRAME) {
      		short ioaddr = dev->base_addr;
      		short saved_addr;
      		unsigned long flags;
      
1153  		spin_lock_irqsave(&lp->devlock, flags);
      		saved_addr = inw(ioaddr+LANCE_ADDR);
      		outw(112, ioaddr+LANCE_ADDR);
      		lp->stats.rx_missed_errors = inw(ioaddr+LANCE_DATA);
      		outw(saved_addr, ioaddr+LANCE_ADDR);
1158  		spin_unlock_irqrestore(&lp->devlock, flags);
      	}
      
1161  	return &lp->stats;
      }
      
      /* Set or clear the multicast filter for this adaptor.
       */
      
1167  static void set_multicast_list(struct net_device *dev)
      {
      	short ioaddr = dev->base_addr;
      
      	outw(0, ioaddr+LANCE_ADDR);
      	outw(0x0004, ioaddr+LANCE_DATA); /* Temporarily stop the lance.	 */
      
1174  	if (dev->flags&IFF_PROMISC) {
      		/* Log any net taps. */
      		printk("%s: Promiscuous mode enabled.\n", dev->name);
      		outw(15, ioaddr+LANCE_ADDR);
      		outw(0x8000, ioaddr+LANCE_DATA); /* Set promiscuous mode */
1179  	} else {
      		short multicast_table[4];
      		int i;
      		int num_addrs=dev->mc_count;
1183  		if(dev->flags&IFF_ALLMULTI)
      			num_addrs=1;
      		/* FIXIT: We don't use the multicast table, but rely on upper-layer filtering. */
      		memset(multicast_table, (num_addrs == 0) ? 0 : -1, sizeof(multicast_table));
1187  		for (i = 0; i < 4; i++) {
      			outw(8 + i, ioaddr+LANCE_ADDR);
      			outw(multicast_table[i], ioaddr+LANCE_DATA);
      		}
      		outw(15, ioaddr+LANCE_ADDR);
      		outw(0x0000, ioaddr+LANCE_DATA); /* Unset promiscuous mode */
      	}
      
      	lance_restart(dev, 0x0142, 0); /*  Resume normal operation */
      
      }