/* drivers/net/eepro100.c: An Intel i82557-559 Ethernet driver for Linux. */
      /*
         NOTICE: For use with late 2.3 kernels only.
         May not compile for kernels 2.3.43-47.
      	Written 1996-1999 by Donald Becker.
      
      	The driver also contains updates by different kernel developers
      	(see incomplete list below).
      	Current maintainer is Andrey V. Savochkin <saw@saw.sw.com.sg>.
      	Please use this email address and linux-kernel mailing list for bug reports.
      
      	This software may be used and distributed according to the terms
      	of the GNU Public License, incorporated herein by reference.
      
      	This driver is for the Intel EtherExpress Pro100 (Speedo3) design.
      	It should work with all i82557/558/559 boards.
      
      	Version history:
      	1998 Apr - 2000 Feb  Andrey V. Savochkin <saw@saw.sw.com.sg>
      		Serious fixes for multicast filter list setting, TX timeout routine;
      		RX ring refilling logic;  other stuff
      	2000 Feb  Jeff Garzik <jgarzik@mandrakesoft.com>
      		Convert to new PCI driver interface
      	2000 Mar 24  Dragan Stancevic <visitor@valinux.com>
      		Disabled FC and ER, to avoid lockups when when we get FCP interrupts.
      	2000 Jul 17 Goutham Rao <goutham.rao@intel.com>
      		PCI DMA API fixes, adding pci_dma_sync_single calls where neccesary
      */
      
      static const char *version =
      "eepro100.c:v1.09j-t 9/29/99 Donald Becker http://cesdis.gsfc.nasa.gov/linux/drivers/eepro100.html\n"
      "eepro100.c: $Revision: 1.35 $ 2000/11/17 Modified by Andrey V. Savochkin <saw@saw.sw.com.sg> and others\n";
      
      /* A few user-configurable values that apply to all boards.
         First set is undocumented and spelled per Intel recommendations. */
      
      static int congenb /* = 0 */; /* Enable congestion control in the DP83840. */
      static int txfifo = 8;		/* Tx FIFO threshold in 4 byte units, 0-15 */
      static int rxfifo = 8;		/* Rx FIFO threshold, default 32 bytes. */
      /* Tx/Rx DMA burst length, 0-127, 0 == no preemption, tx==128 -> disabled. */
      static int txdmacount = 128;
      static int rxdmacount /* = 0 */;
      
      /* Set the copy breakpoint for the copy-only-tiny-buffer Rx method.
         Lower values use more memory, but are faster. */
      #if defined(__alpha__) || defined(__sparc__)
      static int rx_copybreak = 1518;
      #else
      static int rx_copybreak = 200;
      #endif
      
      /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
      static int max_interrupt_work = 20;
      
      /* Maximum number of multicast addresses to filter (vs. rx-all-multicast) */
      static int multicast_filter_limit = 64;
      
      /* 'options' is used to pass a transceiver override or full-duplex flag
         e.g. "options=16" for FD, "options=32" for 100mbps-only. */
      static int full_duplex[] = {-1, -1, -1, -1, -1, -1, -1, -1};
      static int options[] = {-1, -1, -1, -1, -1, -1, -1, -1};
      static int debug = -1;			/* The debug level */
      
      /* A few values that may be tweaked. */
      /* The ring sizes should be a power of two for efficiency. */
      #define TX_RING_SIZE	32
      #define RX_RING_SIZE	32
      /* How much slots multicast filter setup may take.
         Do not descrease without changing set_rx_mode() implementaion. */
      #define TX_MULTICAST_SIZE   2
      #define TX_MULTICAST_RESERV (TX_MULTICAST_SIZE*2)
      /* Actual number of TX packets queued, must be
         <= TX_RING_SIZE-TX_MULTICAST_RESERV. */
      #define TX_QUEUE_LIMIT  (TX_RING_SIZE-TX_MULTICAST_RESERV)
      /* Hysteresis marking queue as no longer full. */
      #define TX_QUEUE_UNFULL (TX_QUEUE_LIMIT-4)
      
      /* Operational parameters that usually are not changed. */
      
      /* Time in jiffies before concluding the transmitter is hung. */
      #define TX_TIMEOUT		(2*HZ)
      /* Size of an pre-allocated Rx buffer: <Ethernet MTU> + slack.*/
      #define PKT_BUF_SZ		1536
      
      #if !defined(__OPTIMIZE__)  ||  !defined(__KERNEL__)
      #warning  You must compile this file with the correct options!
      #warning  See the last lines of the source file.
      #error You must compile this driver with "-O".
      #endif
      
      #include <linux/config.h>
      #include <linux/version.h>
      #include <linux/module.h>
      #if defined(MODVERSIONS)
      #include <linux/modversions.h>
      #endif
      
      #include <linux/kernel.h>
      #include <linux/string.h>
      #include <linux/errno.h>
      #include <linux/ioport.h>
      #include <linux/malloc.h>
      #include <linux/interrupt.h>
      #include <linux/timer.h>
      #include <linux/pci.h>
      #include <linux/spinlock.h>
      #include <linux/init.h>
      
      #include <asm/bitops.h>
      #include <asm/io.h>
      
      #include <linux/netdevice.h>
      #include <linux/etherdevice.h>
      #include <linux/skbuff.h>
      #include <linux/delay.h>
      
      MODULE_AUTHOR("Maintainer: Andrey V. Savochkin <saw@saw.sw.com.sg>");
      MODULE_DESCRIPTION("Intel i82557/i82558/i82559 PCI EtherExpressPro driver");
      MODULE_PARM(debug, "i");
      MODULE_PARM(options, "1-" __MODULE_STRING(8) "i");
      MODULE_PARM(full_duplex, "1-" __MODULE_STRING(8) "i");
      MODULE_PARM(congenb, "i");
      MODULE_PARM(txfifo, "i");
      MODULE_PARM(rxfifo, "i");
      MODULE_PARM(txdmacount, "i");
      MODULE_PARM(rxdmacount, "i");
      MODULE_PARM(rx_copybreak, "i");
      MODULE_PARM(max_interrupt_work, "i");
      MODULE_PARM(multicast_filter_limit, "i");
      
      #define RUN_AT(x) (jiffies + (x))
      
      /* ACPI power states don't universally work (yet) */
      #ifndef CONFIG_EEPRO100_PM
      #undef pci_set_power_state
      #define pci_set_power_state null_set_power_state
 137  static inline int null_set_power_state(struct pci_dev *dev, int state)
      {
 139  	return 0;
      }
      #endif /* CONFIG_EEPRO100_PM */
      
      #define netdevice_start(dev)
      #define netdevice_stop(dev)
      #define netif_set_tx_timeout(dev, tf, tm) \
      								do { \
      									(dev)->tx_timeout = (tf); \
      									(dev)->watchdog_timeo = (tm); \
      								} while(0)
      #define netif_device_attach(dev) netif_start_queue(dev)
      #define netif_device_detach(dev) netif_stop_queue(dev)
      
      #ifndef PCI_DEVICE_ID_INTEL_ID1029
      #define PCI_DEVICE_ID_INTEL_ID1029 0x1029
      #endif
      #ifndef PCI_DEVICE_ID_INTEL_ID1030
      #define PCI_DEVICE_ID_INTEL_ID1030 0x1030
      #endif
      
      
      int speedo_debug = 1;
      
      /*
      				Theory of Operation
      
      I. Board Compatibility
      
      This device driver is designed for the Intel i82557 "Speedo3" chip, Intel's
      single-chip fast Ethernet controller for PCI, as used on the Intel
      EtherExpress Pro 100 adapter.
      
      II. Board-specific settings
      
      PCI bus devices are configured by the system at boot time, so no jumpers
      need to be set on the board.  The system BIOS should be set to assign the
      PCI INTA signal to an otherwise unused system IRQ line.  While it's
      possible to share PCI interrupt lines, it negatively impacts performance and
      only recent kernels support it.
      
      III. Driver operation
      
      IIIA. General
      The Speedo3 is very similar to other Intel network chips, that is to say
      "apparently designed on a different planet".  This chips retains the complex
      Rx and Tx descriptors and multiple buffers pointers as previous chips, but
      also has simplified Tx and Rx buffer modes.  This driver uses the "flexible"
      Tx mode, but in a simplified lower-overhead manner: it associates only a
      single buffer descriptor with each frame descriptor.
      
      Despite the extra space overhead in each receive skbuff, the driver must use
      the simplified Rx buffer mode to assure that only a single data buffer is
      associated with each RxFD. The driver implements this by reserving space
      for the Rx descriptor at the head of each Rx skbuff.
      
      The Speedo-3 has receive and command unit base addresses that are added to
      almost all descriptor pointers.  The driver sets these to zero, so that all
      pointer fields are absolute addresses.
      
      The System Control Block (SCB) of some previous Intel chips exists on the
      chip in both PCI I/O and memory space.  This driver uses the I/O space
      registers, but might switch to memory mapped mode to better support non-x86
      processors.
      
      IIIB. Transmit structure
      
      The driver must use the complex Tx command+descriptor mode in order to
      have a indirect pointer to the skbuff data section.  Each Tx command block
      (TxCB) is associated with two immediately appended Tx Buffer Descriptor
      (TxBD).  A fixed ring of these TxCB+TxBD pairs are kept as part of the
      speedo_private data structure for each adapter instance.
      
      The newer i82558 explicitly supports this structure, and can read the two
      TxBDs in the same PCI burst as the TxCB.
      
      This ring structure is used for all normal transmit packets, but the
      transmit packet descriptors aren't long enough for most non-Tx commands such
      as CmdConfigure.  This is complicated by the possibility that the chip has
      already loaded the link address in the previous descriptor.  So for these
      commands we convert the next free descriptor on the ring to a NoOp, and point
      that descriptor's link to the complex command.
      
      An additional complexity of these non-transmit commands are that they may be
      added asynchronous to the normal transmit queue, so we disable interrupts
      whenever the Tx descriptor ring is manipulated.
      
      A notable aspect of these special configure commands is that they do
      work with the normal Tx ring entry scavenge method.  The Tx ring scavenge
      is done at interrupt time using the 'dirty_tx' index, and checking for the
      command-complete bit.  While the setup frames may have the NoOp command on the
      Tx ring marked as complete, but not have completed the setup command, this
      is not a problem.  The tx_ring entry can be still safely reused, as the
      tx_skbuff[] entry is always empty for config_cmd and mc_setup frames.
      
      Commands may have bits set e.g. CmdSuspend in the command word to either
      suspend or stop the transmit/command unit.  This driver always flags the last
      command with CmdSuspend, erases the CmdSuspend in the previous command, and
      then issues a CU_RESUME.
      Note: Watch out for the potential race condition here: imagine
      	erasing the previous suspend
      		the chip processes the previous command
      		the chip processes the final command, and suspends
      	doing the CU_RESUME
      		the chip processes the next-yet-valid post-final-command.
      So blindly sending a CU_RESUME is only safe if we do it immediately after
      after erasing the previous CmdSuspend, without the possibility of an
      intervening delay.  Thus the resume command is always within the
      interrupts-disabled region.  This is a timing dependence, but handling this
      condition in a timing-independent way would considerably complicate the code.
      
      Note: In previous generation Intel chips, restarting the command unit was a
      notoriously slow process.  This is presumably no longer true.
      
      IIIC. Receive structure
      
      Because of the bus-master support on the Speedo3 this driver uses the new
      SKBUFF_RX_COPYBREAK scheme, rather than a fixed intermediate receive buffer.
      This scheme allocates full-sized skbuffs as receive buffers.  The value
      SKBUFF_RX_COPYBREAK is used as the copying breakpoint: it is chosen to
      trade-off the memory wasted by passing the full-sized skbuff to the queue
      layer for all frames vs. the copying cost of copying a frame to a
      correctly-sized skbuff.
      
      For small frames the copying cost is negligible (esp. considering that we
      are pre-loading the cache with immediately useful header information), so we
      allocate a new, minimally-sized skbuff.  For large frames the copying cost
      is non-trivial, and the larger copy might flush the cache of useful data, so
      we pass up the skbuff the packet was received into.
      
      IV. Notes
      
      Thanks to Steve Williams of Intel for arranging the non-disclosure agreement
      that stated that I could disclose the information.  But I still resent
      having to sign an Intel NDA when I'm helping Intel sell their own product!
      
      */
      
      static int speedo_found1(struct pci_dev *pdev, long ioaddr, int fnd_cnt, int acpi_idle_state);
      
      enum pci_flags_bit {
      	PCI_USES_IO=1, PCI_USES_MEM=2, PCI_USES_MASTER=4,
      	PCI_ADDR0=0x10<<0, PCI_ADDR1=0x10<<1, PCI_ADDR2=0x10<<2, PCI_ADDR3=0x10<<3,
      };
      
 284  static inline unsigned int io_inw(unsigned long port)
      {
 286  	return inw(port);
      }
 288  static inline void io_outw(unsigned int val, unsigned long port)
      {
      	outw(val, port);
      }
      
      #ifndef USE_IO
      /* Currently alpha headers define in/out macros.
         Undefine them.  2000/03/30  SAW */
      #undef inb
      #undef inw
      #undef inl
      #undef outb
      #undef outw
      #undef outl
      #define inb readb
      #define inw readw
      #define inl readl
      #define outb writeb
      #define outw writew
      #define outl writel
      #endif
      
      /* How to wait for the command unit to accept a command.
         Typically this takes 0 ticks. */
 312  static inline void wait_for_cmd_done(long cmd_ioaddr)
      {
      	int wait = 1000;
 315  	do   ;
 316  	while(inb(cmd_ioaddr) && --wait >= 0);
      #ifndef final_version
 318  	if (wait < 0)
      		printk(KERN_ALERT "eepro100: wait_for_cmd_done timeout!\n");
      #endif
      }
      
      /* Offsets to the various registers.
         All accesses need not be longword aligned. */
      enum speedo_offsets {
      	SCBStatus = 0, SCBCmd = 2,	/* Rx/Command Unit command and status. */
      	SCBPointer = 4,				/* General purpose pointer. */
      	SCBPort = 8,				/* Misc. commands and operands.  */
      	SCBflash = 12, SCBeeprom = 14, /* EEPROM and flash memory control. */
      	SCBCtrlMDI = 16,			/* MDI interface control. */
      	SCBEarlyRx = 20,			/* Early receive byte count. */
      };
      /* Commands that can be put in a command list entry. */
      enum commands {
      	CmdNOp = 0, CmdIASetup = 0x10000, CmdConfigure = 0x20000,
      	CmdMulticastList = 0x30000, CmdTx = 0x40000, CmdTDR = 0x50000,
      	CmdDump = 0x60000, CmdDiagnose = 0x70000,
      	CmdSuspend = 0x40000000,	/* Suspend after completion. */
      	CmdIntr = 0x20000000,		/* Interrupt after completion. */
      	CmdTxFlex = 0x00080000,		/* Use "Flexible mode" for CmdTx command. */
      };
      /* Clear CmdSuspend (1<<30) avoiding interference with the card access to the
         status bits.  Previous driver versions used separate 16 bit fields for
         commands and statuses.  --SAW
         FIXME: it may not work on non-IA32 architectures.
       */
      #if defined(__LITTLE_ENDIAN)
      #define clear_suspend(cmd)  ((__u16 *)&(cmd)->cmd_status)[1] &= ~0x4000
      #elif defined(__BIG_ENDIAN)
      #define clear_suspend(cmd)  ((__u16 *)&(cmd)->cmd_status)[1] &= ~0x0040
      #else
      #error Unsupported byteorder
      #endif
      
      enum SCBCmdBits {
      	SCBMaskCmdDone=0x8000, SCBMaskRxDone=0x4000, SCBMaskCmdIdle=0x2000,
      	SCBMaskRxSuspend=0x1000, SCBMaskEarlyRx=0x0800, SCBMaskFlowCtl=0x0400,
      	SCBTriggerIntr=0x0200, SCBMaskAll=0x0100,
      	/* The rest are Rx and Tx commands. */
      	CUStart=0x0010, CUResume=0x0020, CUStatsAddr=0x0040, CUShowStats=0x0050,
      	CUCmdBase=0x0060,	/* CU Base address (set to zero) . */
      	CUDumpStats=0x0070, /* Dump then reset stats counters. */
      	RxStart=0x0001, RxResume=0x0002, RxAbort=0x0004, RxAddrLoad=0x0006,
      	RxResumeNoResources=0x0007,
      };
      
      enum SCBPort_cmds {
      	PortReset=0, PortSelfTest=1, PortPartialReset=2, PortDump=3,
      };
      
      /* The Speedo3 Rx and Tx frame/buffer descriptors. */
      struct descriptor {			    /* A generic descriptor. */
      	s32 cmd_status;				/* All command and status fields. */
      	u32 link;				    /* struct descriptor *  */
      	unsigned char params[0];
      };
      
      /* The Speedo3 Rx and Tx buffer descriptors. */
      struct RxFD {					/* Receive frame descriptor. */
      	s32 status;
      	u32 link;					/* struct RxFD * */
      	u32 rx_buf_addr;			/* void * */
      	u32 count;
      };
      
      /* Selected elements of the Tx/RxFD.status word. */
      enum RxFD_bits {
      	RxComplete=0x8000, RxOK=0x2000,
      	RxErrCRC=0x0800, RxErrAlign=0x0400, RxErrTooBig=0x0200, RxErrSymbol=0x0010,
      	RxEth2Type=0x0020, RxNoMatch=0x0004, RxNoIAMatch=0x0002,
      	TxUnderrun=0x1000,  StatusComplete=0x8000,
      };
      
      #define CONFIG_DATA_SIZE 22
      struct TxFD {					/* Transmit frame descriptor set. */
      	s32 status;
      	u32 link;					/* void * */
      	u32 tx_desc_addr;			/* Always points to the tx_buf_addr element. */
      	s32 count;					/* # of TBD (=1), Tx start thresh., etc. */
      	/* This constitutes two "TBD" entries -- we only use one. */
      #define TX_DESCR_BUF_OFFSET 16
      	u32 tx_buf_addr0;			/* void *, frame to be transmitted.  */
      	s32 tx_buf_size0;			/* Length of Tx frame. */
      	u32 tx_buf_addr1;			/* void *, frame to be transmitted.  */
      	s32 tx_buf_size1;			/* Length of Tx frame. */
      	/* the structure must have space for at least CONFIG_DATA_SIZE starting
      	 * from tx_desc_addr field */
      };
      
      /* Multicast filter setting block.  --SAW */
      struct speedo_mc_block {
      	struct speedo_mc_block *next;
      	unsigned int tx;
      	dma_addr_t frame_dma;
      	unsigned int len;
      	struct descriptor frame __attribute__ ((__aligned__(16)));
      };
      
      /* Elements of the dump_statistics block. This block must be lword aligned. */
      struct speedo_stats {
      	u32 tx_good_frames;
      	u32 tx_coll16_errs;
      	u32 tx_late_colls;
      	u32 tx_underruns;
      	u32 tx_lost_carrier;
      	u32 tx_deferred;
      	u32 tx_one_colls;
      	u32 tx_multi_colls;
      	u32 tx_total_colls;
      	u32 rx_good_frames;
      	u32 rx_crc_errs;
      	u32 rx_align_errs;
      	u32 rx_resource_errs;
      	u32 rx_overrun_errs;
      	u32 rx_colls_errs;
      	u32 rx_runt_errs;
      	u32 done_marker;
      };
      
      enum Rx_ring_state_bits {
      	RrNoMem=1, RrPostponed=2, RrNoResources=4, RrOOMReported=8,
      };
      
      /* Do not change the position (alignment) of the first few elements!
         The later elements are grouped for cache locality.
      
         Unfortunately, all the positions have been shifted since there.
         A new re-alignment is required.  2000/03/06  SAW */
      struct speedo_private {
      	struct TxFD	*tx_ring;				/* Commands (usually CmdTxPacket). */
      	struct RxFD *rx_ringp[RX_RING_SIZE];/* Rx descriptor, used as ring. */
      	/* The addresses of a Tx/Rx-in-place packets/buffers. */
      	struct sk_buff *tx_skbuff[TX_RING_SIZE];
      	struct sk_buff *rx_skbuff[RX_RING_SIZE];
      	/* Mapped addresses of the rings. */
      	dma_addr_t tx_ring_dma;
      #define TX_RING_ELEM_DMA(sp, n) ((sp)->tx_ring_dma + (n)*sizeof(struct TxFD))
      	dma_addr_t rx_ring_dma[RX_RING_SIZE];
      	struct descriptor *last_cmd;		/* Last command sent. */
      	unsigned int cur_tx, dirty_tx;		/* The ring entries to be free()ed. */
      	spinlock_t lock;					/* Group with Tx control cache line. */
      	u32 tx_threshold;					/* The value for txdesc.count. */
      	struct RxFD *last_rxf;				/* Last filled RX buffer. */
      	dma_addr_t last_rxf_dma;
      	unsigned int cur_rx, dirty_rx;		/* The next free ring entry */
      	long last_rx_time;			/* Last Rx, in jiffies, to handle Rx hang. */
      	const char *product_name;
      	struct net_device_stats stats;
      	struct speedo_stats *lstats;
      	dma_addr_t lstats_dma;
      	int chip_id;
      	struct pci_dev *pdev;
      	struct timer_list timer;			/* Media selection timer. */
      	struct speedo_mc_block *mc_setup_head;/* Multicast setup frame list head. */
      	struct speedo_mc_block *mc_setup_tail;/* Multicast setup frame list tail. */
      	int in_interrupt;					/* Word-aligned dev->interrupt */
      	unsigned char acpi_pwr;
      	char rx_mode;						/* Current PROMISC/ALLMULTI setting. */
      	unsigned int tx_full:1;				/* The Tx queue is full. */
      	unsigned int full_duplex:1;			/* Full-duplex operation requested. */
      	unsigned int flow_ctrl:1;			/* Use 802.3x flow control. */
      	unsigned int rx_bug:1;				/* Work around receiver hang errata. */
      	unsigned char default_port:8;		/* Last dev->if_port value. */
      	unsigned char rx_ring_state;		/* RX ring status flags. */
      	unsigned short phy[2];				/* PHY media interfaces available. */
      	unsigned short advertising;			/* Current PHY advertised caps. */
      	unsigned short partner;				/* Link partner caps. */
      };
      
      /* The parameters for a CmdConfigure operation.
         There are so many options that it would be difficult to document each bit.
         We mostly use the default or recommended settings. */
      const char i82557_config_cmd[CONFIG_DATA_SIZE] = {
      	22, 0x08, 0, 0,  0, 0, 0x32, 0x03,  1, /* 1=Use MII  0=Use AUI */
      	0, 0x2E, 0,  0x60, 0,
      	0xf2, 0x48,   0, 0x40, 0xf2, 0x80, 		/* 0x40=Force full-duplex */
      	0x3f, 0x05, };
      const char i82558_config_cmd[CONFIG_DATA_SIZE] = {
      	22, 0x08, 0, 1,  0, 0, 0x22, 0x03,  1, /* 1=Use MII  0=Use AUI */
      	0, 0x2E, 0,  0x60, 0x08, 0x88,
      	0x68, 0, 0x40, 0xf2, 0x84,		/* Disable FC */
      	0x31, 0x05, };
      
      /* PHY media interface chips. */
      static const char *phys[] = {
      	"None", "i82553-A/B", "i82553-C", "i82503",
      	"DP83840", "80c240", "80c24", "i82555",
      	"unknown-8", "unknown-9", "DP83840A", "unknown-11",
      	"unknown-12", "unknown-13", "unknown-14", "unknown-15", };
      enum phy_chips { NonSuchPhy=0, I82553AB, I82553C, I82503, DP83840, S80C240,
      					 S80C24, I82555, DP83840A=10, };
      static const char is_mii[] = { 0, 1, 1, 0, 1, 1, 0, 1 };
      #define EE_READ_CMD		(6)
      
      static int eepro100_init_one(struct pci_dev *pdev,
      		const struct pci_device_id *ent);
      static void eepro100_remove_one (struct pci_dev *pdev);
      #ifdef CONFIG_EEPRO100_PM
      static void eepro100_suspend (struct pci_dev *pdev);
      static void eepro100_resume (struct pci_dev *pdev);
      #endif
      
      static int do_eeprom_cmd(long ioaddr, int cmd, int cmd_len);
      static int mdio_read(long ioaddr, int phy_id, int location);
      static int mdio_write(long ioaddr, int phy_id, int location, int value);
      static int speedo_open(struct net_device *dev);
      static void speedo_resume(struct net_device *dev);
      static void speedo_timer(unsigned long data);
      static void speedo_init_rx_ring(struct net_device *dev);
      static void speedo_tx_timeout(struct net_device *dev);
      static int speedo_start_xmit(struct sk_buff *skb, struct net_device *dev);
      static void speedo_refill_rx_buffers(struct net_device *dev, int force);
      static int speedo_rx(struct net_device *dev);
      static void speedo_tx_buffer_gc(struct net_device *dev);
      static void speedo_interrupt(int irq, void *dev_instance, struct pt_regs *regs);
      static int speedo_close(struct net_device *dev);
      static struct net_device_stats *speedo_get_stats(struct net_device *dev);
      static int speedo_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
      static void set_rx_mode(struct net_device *dev);
      static void speedo_show_state(struct net_device *dev);
      
      
      
      #ifdef honor_default_port
      /* Optional driver feature to allow forcing the transceiver setting.
         Not recommended. */
      static int mii_ctrl[8] = { 0x3300, 0x3100, 0x0000, 0x0100,
      						   0x2000, 0x2100, 0x0400, 0x3100};
      #endif
      
 551  static int __devinit eepro100_init_one (struct pci_dev *pdev,
      		const struct pci_device_id *ent)
      {
      	unsigned long ioaddr;
      	int irq;
      	int acpi_idle_state = 0, pm;
      	static int cards_found /* = 0 */;
      
      	static int did_version /* = 0 */;		/* Already printed version info. */
 560  	if (speedo_debug > 0  &&  did_version++ == 0)
      		printk(version);
      
      	if (!request_region(pci_resource_start(pdev, 1),
 564  			pci_resource_len(pdev, 1), "eepro100")) {
      		printk (KERN_ERR "eepro100: cannot reserve I/O ports\n");
 566  		goto err_out_none;
      	}
      	if (!request_mem_region(pci_resource_start(pdev, 0),
 569  			pci_resource_len(pdev, 0), "eepro100")) {
      		printk (KERN_ERR "eepro100: cannot reserve MMIO region\n");
 571  		goto err_out_free_pio_region;
      	}
      
      	irq = pdev->irq;
      #ifdef USE_IO
      	ioaddr = pci_resource_start(pdev, 1);
      	if (speedo_debug > 2)
      		printk("Found Intel i82557 PCI Speedo at I/O %#lx, IRQ %d.\n",
      			   ioaddr, irq);
      #else
      	ioaddr = (unsigned long)ioremap(pci_resource_start(pdev, 0),
      									pci_resource_len(pdev, 0));
 583  	if (!ioaddr) {
      		printk (KERN_ERR "eepro100: cannot remap MMIO region %lx @ %lx\n",
      				pci_resource_len(pdev, 0), pci_resource_start(pdev, 0));
 586  		goto err_out_free_mmio_region;
      	}
 588  	if (speedo_debug > 2)
      		printk("Found Intel i82557 PCI Speedo, MMIO at %#lx, IRQ %d.\n",
      			   pci_resource_start(pdev, 0), irq);
      #endif
      
      	/* save power state b4 pci_enable_device overwrites it */
      	pm = pci_find_capability(pdev, PCI_CAP_ID_PM);
 595  	if (pm) {
      		u16 pwr_command;
      		pci_read_config_word(pdev, pm + PCI_PM_CTRL, &pwr_command);
      		acpi_idle_state = pwr_command & PCI_PM_CTRL_STATE_MASK;
      	}
      
 601  	if (pci_enable_device(pdev))
 602  		goto err_out_free_mmio_region;
      
      	pci_set_master(pdev);
      
 606  	if (speedo_found1(pdev, ioaddr, cards_found, acpi_idle_state) == 0)
      		cards_found++;
 608  	else
 609  		goto err_out_iounmap;
      
 611  	return 0;
      
      err_out_iounmap: ;
      #ifndef USE_IO
      	iounmap ((void *)ioaddr);
      #endif
      err_out_free_mmio_region:
      	release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
      err_out_free_pio_region:
      	release_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1));
      err_out_none:
 622  	return -ENODEV;
      }
      
 625  static int speedo_found1(struct pci_dev *pdev,
      		long ioaddr, int card_idx, int acpi_idle_state)
      {
      	struct net_device *dev;
      	struct speedo_private *sp;
      	const char *product;
      	int i, option;
      	u16 eeprom[0x100];
      	int size;
      	void *tx_ring_space;
      	dma_addr_t tx_ring_dma;
      
      	size = TX_RING_SIZE * sizeof(struct TxFD) + sizeof(struct speedo_stats);
      	tx_ring_space = pci_alloc_consistent(pdev, size, &tx_ring_dma);
 639  	if (tx_ring_space == NULL)
 640  		return -1;
      
      	dev = init_etherdev(NULL, sizeof(struct speedo_private));
 643  	if (dev == NULL) {
      		printk(KERN_ERR "eepro100: Could not allocate ethernet device.\n");
      		pci_free_consistent(pdev, size, tx_ring_space, tx_ring_dma);
 646  		return -1;
      	}
      
 649  	if (dev->mem_start > 0)
      		option = dev->mem_start;
 651  	else if (card_idx >= 0  &&  options[card_idx] >= 0)
      		option = options[card_idx];
 653  	else
      		option = 0;
      
      	/* Read the station address EEPROM before doing the reset.
      	   Nominally his should even be done before accepting the device, but
      	   then we wouldn't have a device name with which to report the error.
      	   The size test is for 6 bit vs. 8 bit address serial EEPROMs.
      	*/
      	{
      		unsigned long iobase;
      		int read_cmd, ee_size;
      		u16 sum;
      		int j;
      
      		/* Use IO only to avoid postponed writes and satisfy EEPROM timing
      		   requirements. */
      		iobase = pci_resource_start(pdev, 1);
      		if ((do_eeprom_cmd(iobase, EE_READ_CMD << 24, 27) & 0xffe0000)
 671  			== 0xffe0000) {
      			ee_size = 0x100;
      			read_cmd = EE_READ_CMD << 24;
 674  		} else {
      			ee_size = 0x40;
      			read_cmd = EE_READ_CMD << 22;
      		}
      
 679  		for (j = 0, i = 0, sum = 0; i < ee_size; i++) {
      			u16 value = do_eeprom_cmd(iobase, read_cmd | (i << 16), 27);
      			eeprom[i] = value;
      			sum += value;
 683  			if (i < 3) {
      				dev->dev_addr[j++] = value;
      				dev->dev_addr[j++] = value >> 8;
      			}
      		}
 688  		if (sum != 0xBABA)
      			printk(KERN_WARNING "%s: Invalid EEPROM checksum %#4.4x, "
      				   "check settings before activating this device!\n",
      				   dev->name, sum);
      		/* Don't  unregister_netdev(dev);  as the EEPro may actually be
      		   usable, especially if the MAC address is set later.
      		   On the other hand, it may be unusable if MDI data is corrupted. */
      	}
      
      	/* Reset the chip: stop Tx and Rx processes and clear counters.
      	   This takes less than 10usec and will easily finish before the next
      	   action. */
      	outl(PortReset, ioaddr + SCBPort);
      	udelay(10);
      
 703  	if (eeprom[3] & 0x0100)
      		product = "OEM i82557/i82558 10/100 Ethernet";
 705  	else
      		product = pdev->name;
      
      	printk(KERN_INFO "%s: %s, ", dev->name, product);
      
 710  	for (i = 0; i < 5; i++)
      		printk("%2.2X:", dev->dev_addr[i]);
      	printk("%2.2X, ", dev->dev_addr[i]);
      #ifdef USE_IO
      	printk("I/O at %#3lx, ", ioaddr);
      #endif
      	printk("IRQ %d.\n", pdev->irq);
      
      #if 1 || defined(kernel_bloat)
      	/* OK, this is pure kernel bloat.  I don't like it when other drivers
      	   waste non-pageable kernel space to emit similar messages, but I need
      	   them for bug reports. */
      	{
      		const char *connectors[] = {" RJ45", " BNC", " AUI", " MII"};
      		/* The self-test results must be paragraph aligned. */
      		volatile s32 *self_test_results;
      		int boguscnt = 16000;	/* Timeout for set-test. */
 727  		if (eeprom[3] & 0x03)
      			printk(KERN_INFO "  Receiver lock-up bug exists -- enabling"
      				   " work-around.\n");
      		printk(KERN_INFO "  Board assembly %4.4x%2.2x-%3.3d, Physical"
      			   " connectors present:",
      			   eeprom[8], eeprom[9]>>8, eeprom[9] & 0xff);
 733  		for (i = 0; i < 4; i++)
 734  			if (eeprom[5] & (1<<i))
      				printk(connectors[i]);
      		printk("\n"KERN_INFO"  Primary interface chip %s PHY #%d.\n",
      			   phys[(eeprom[6]>>8)&15], eeprom[6] & 0x1f);
 738  		if (eeprom[7] & 0x0700)
      			printk(KERN_INFO "    Secondary interface chip %s.\n",
      				   phys[(eeprom[7]>>8)&7]);
      		if (((eeprom[6]>>8) & 0x3f) == DP83840
 742  			||  ((eeprom[6]>>8) & 0x3f) == DP83840A) {
      			int mdi_reg23 = mdio_read(ioaddr, eeprom[6] & 0x1f, 23) | 0x0422;
 744  			if (congenb)
      			  mdi_reg23 |= 0x0100;
      			printk(KERN_INFO"  DP83840 specific setup, setting register 23 to %4.4x.\n",
      				   mdi_reg23);
      			mdio_write(ioaddr, eeprom[6] & 0x1f, 23, mdi_reg23);
      		}
 750  		if ((option >= 0) && (option & 0x70)) {
      			printk(KERN_INFO "  Forcing %dMbs %s-duplex operation.\n",
      				   (option & 0x20 ? 100 : 10),
      				   (option & 0x10 ? "full" : "half"));
      			mdio_write(ioaddr, eeprom[6] & 0x1f, 0,
      					   ((option & 0x20) ? 0x2000 : 0) | 	/* 100mbps? */
      					   ((option & 0x10) ? 0x0100 : 0)); /* Full duplex? */
      		}
      
      		/* Perform a system self-test. */
      		self_test_results = (s32*) ((((long) tx_ring_space) + 15) & ~0xf);
      		self_test_results[0] = 0;
      		self_test_results[1] = -1;
      		outl(tx_ring_dma | PortSelfTest, ioaddr + SCBPort);
 764  		do {
      			udelay(10);
 766  		} while (self_test_results[1] == -1  &&  --boguscnt >= 0);
      
 768  		if (boguscnt < 0) {		/* Test optimized out. */
      			printk(KERN_ERR "Self test failed, status %8.8x:\n"
      				   KERN_ERR " Failure to initialize the i82557.\n"
      				   KERN_ERR " Verify that the card is a bus-master"
      				   " capable slot.\n",
      				   self_test_results[1]);
 774  		} else
      			printk(KERN_INFO "  General self-test: %s.\n"
      				   KERN_INFO "  Serial sub-system self-test: %s.\n"
      				   KERN_INFO "  Internal registers self-test: %s.\n"
      				   KERN_INFO "  ROM checksum self-test: %s (%#8.8x).\n",
      				   self_test_results[1] & 0x1000 ? "failed" : "passed",
      				   self_test_results[1] & 0x0020 ? "failed" : "passed",
      				   self_test_results[1] & 0x0008 ? "failed" : "passed",
      				   self_test_results[1] & 0x0004 ? "failed" : "passed",
      				   self_test_results[0]);
      	}
      #endif  /* kernel_bloat */
      
      	outl(PortReset, ioaddr + SCBPort);
      	udelay(10);
      
      	/* Return the chip to its original power state. */
      	pci_set_power_state(pdev, acpi_idle_state);
      
      	pdev->driver_data = dev;
      
      	dev->base_addr = ioaddr;
      	dev->irq = pdev->irq;
      
      	sp = dev->priv;
      	sp->pdev = pdev;
      	sp->acpi_pwr = acpi_idle_state;
      	sp->tx_ring = tx_ring_space;
      	sp->tx_ring_dma = tx_ring_dma;
      	sp->lstats = (struct speedo_stats *)(sp->tx_ring + TX_RING_SIZE);
      	sp->lstats_dma = cpu_to_le32(TX_RING_ELEM_DMA(sp, TX_RING_SIZE));
      	init_timer(&sp->timer); /* used in ioctl() */
      
      	sp->full_duplex = option >= 0 && (option & 0x10) ? 1 : 0;
 808  	if (card_idx >= 0) {
 809  		if (full_duplex[card_idx] >= 0)
      			sp->full_duplex = full_duplex[card_idx];
      	}
      	sp->default_port = option >= 0 ? (option & 0x0f) : 0;
      
      	sp->phy[0] = eeprom[6];
      	sp->phy[1] = eeprom[7];
      	sp->rx_bug = (eeprom[3] & 0x03) == 3 ? 0 : 1;
      
 818  	if (sp->rx_bug)
      		printk(KERN_INFO "  Receiver lock-up workaround activated.\n");
      
      	/* The Speedo-specific entries in the device structure. */
      	dev->open = &speedo_open;
      	dev->hard_start_xmit = &speedo_start_xmit;
 824  	netif_set_tx_timeout(dev, &speedo_tx_timeout, TX_TIMEOUT);
      	dev->stop = &speedo_close;
      	dev->get_stats = &speedo_get_stats;
      	dev->set_multicast_list = &set_rx_mode;
      	dev->do_ioctl = &speedo_ioctl;
      
 830  	return 0;
      }
      
      /* Serial EEPROM section.
         A "bit" grungy, but we work our way through bit-by-bit :->. */
      /*  EEPROM_Ctrl bits. */
      #define EE_SHIFT_CLK	0x01	/* EEPROM shift clock. */
      #define EE_CS			0x02	/* EEPROM chip select. */
      #define EE_DATA_WRITE	0x04	/* EEPROM chip data in. */
      #define EE_DATA_READ	0x08	/* EEPROM chip data out. */
      #define EE_ENB			(0x4800 | EE_CS)
      #define EE_WRITE_0		0x4802
      #define EE_WRITE_1		0x4806
      #define EE_OFFSET		SCBeeprom
      
      /* The fixes for the code were kindly provided by Dragan Stancevic
         <visitor@valinux.com> to strictly follow Intel specifications of EEPROM
         access timing.
         The publicly available sheet 64486302 (sec. 3.1) specifies 1us access
         interval for serial EEPROM.  However, it looks like that there is an
         additional requirement dictating larger udelay's in the code below.
         2000/05/24  SAW */
 852  static int do_eeprom_cmd(long ioaddr, int cmd, int cmd_len)
      {
      	unsigned retval = 0;
      	long ee_addr = ioaddr + SCBeeprom;
      
      	io_outw(EE_ENB, ee_addr); udelay(2);
      	io_outw(EE_ENB | EE_SHIFT_CLK, ee_addr); udelay(2);
      
      	/* Shift the command bits out. */
 861  	do {
      		short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
      		io_outw(dataval, ee_addr); udelay(2);
      		io_outw(dataval | EE_SHIFT_CLK, ee_addr); udelay(2);
      		retval = (retval << 1) | ((io_inw(ee_addr) & EE_DATA_READ) ? 1 : 0);
 866  	} while (--cmd_len >= 0);
      	io_outw(EE_ENB, ee_addr); udelay(2);
      
      	/* Terminate the EEPROM access. */
      	io_outw(EE_ENB & ~EE_CS, ee_addr);
 871  	return retval;
      }
      
 874  static int mdio_read(long ioaddr, int phy_id, int location)
      {
      	int val, boguscnt = 64*10;		/* <64 usec. to complete, typ 27 ticks */
      	outl(0x08000000 | (location<<16) | (phy_id<<21), ioaddr + SCBCtrlMDI);
 878  	do {
      		val = inl(ioaddr + SCBCtrlMDI);
 880  		if (--boguscnt < 0) {
      			printk(KERN_ERR " mdio_read() timed out with val = %8.8x.\n", val);
 882  			break;
      		}
 884  	} while (! (val & 0x10000000));
 885  	return val & 0xffff;
      }
      
 888  static int mdio_write(long ioaddr, int phy_id, int location, int value)
      {
      	int val, boguscnt = 64*10;		/* <64 usec. to complete, typ 27 ticks */
      	outl(0x04000000 | (location<<16) | (phy_id<<21) | value,
      		 ioaddr + SCBCtrlMDI);
 893  	do {
      		val = inl(ioaddr + SCBCtrlMDI);
 895  		if (--boguscnt < 0) {
      			printk(KERN_ERR" mdio_write() timed out with val = %8.8x.\n", val);
 897  			break;
      		}
 899  	} while (! (val & 0x10000000));
 900  	return val & 0xffff;
      }
      
      
      static int
 905  speedo_open(struct net_device *dev)
      {
      	struct speedo_private *sp = (struct speedo_private *)dev->priv;
      	long ioaddr = dev->base_addr;
      	int retval;
      
 911  	if (speedo_debug > 1)
      		printk(KERN_DEBUG "%s: speedo_open() irq %d.\n", dev->name, dev->irq);
      
 914  	MOD_INC_USE_COUNT;
      
      	pci_set_power_state(sp->pdev, 0);
      
      	/* Set up the Tx queue early.. */
      	sp->cur_tx = 0;
      	sp->dirty_tx = 0;
      	sp->last_cmd = 0;
      	sp->tx_full = 0;
 923  	spin_lock_init(&sp->lock);
      	sp->in_interrupt = 0;
      
      	/* .. we can safely take handler calls during init. */
      	retval = request_irq(dev->irq, &speedo_interrupt, SA_SHIRQ, dev->name, dev);
 928  	if (retval) {
 929  		MOD_DEC_USE_COUNT;
 930  		return retval;
      	}
      
      	dev->if_port = sp->default_port;
      
      #ifdef oh_no_you_dont_unless_you_honour_the_options_passed_in_to_us
      	/* Retrigger negotiation to reset previous errors. */
      	if ((sp->phy[0] & 0x8000) == 0) {
      		int phy_addr = sp->phy[0] & 0x1f ;
      		/* Use 0x3300 for restarting NWay, other values to force xcvr:
      		   0x0000 10-HD
      		   0x0100 10-FD
      		   0x2000 100-HD
      		   0x2100 100-FD
      		*/
      #ifdef honor_default_port
      		mdio_write(ioaddr, phy_addr, 0, mii_ctrl[dev->default_port & 7]);
      #else
      		mdio_write(ioaddr, phy_addr, 0, 0x3300);
      #endif
      	}
      #endif
      
      	speedo_init_rx_ring(dev);
      
      	/* Fire up the hardware. */
      	outw(SCBMaskAll, ioaddr + SCBCmd);
      	speedo_resume(dev);
      
      	netdevice_start(dev);
      	netif_start_queue(dev);
      
      	/* Setup the chip and configure the multicast list. */
      	sp->mc_setup_head = NULL;
      	sp->mc_setup_tail = NULL;
      	sp->flow_ctrl = sp->partner = 0;
      	sp->rx_mode = -1;			/* Invalid -> always reset the mode. */
      	set_rx_mode(dev);
 968  	if ((sp->phy[0] & 0x8000) == 0)
      		sp->advertising = mdio_read(ioaddr, sp->phy[0] & 0x1f, 4);
      
 971  	if (speedo_debug > 2) {
      		printk(KERN_DEBUG "%s: Done speedo_open(), status %8.8x.\n",
      			   dev->name, inw(ioaddr + SCBStatus));
      	}
      
      	/* Set the timer.  The timer serves a dual purpose:
      	   1) to monitor the media interface (e.g. link beat) and perhaps switch
      	   to an alternate media type
      	   2) to monitor Rx activity, and restart the Rx process if the receiver
      	   hangs. */
      	sp->timer.expires = RUN_AT((24*HZ)/10); 			/* 2.4 sec. */
      	sp->timer.data = (unsigned long)dev;
      	sp->timer.function = &speedo_timer;					/* timer handler */
      	add_timer(&sp->timer);
      
      	/* No need to wait for the command unit to accept here. */
 987  	if ((sp->phy[0] & 0x8000) == 0)
      		mdio_read(ioaddr, sp->phy[0] & 0x1f, 0);
      
 990  	return 0;
      }
      
      /* Start the chip hardware after a full reset. */
 994  static void speedo_resume(struct net_device *dev)
      {
      	struct speedo_private *sp = (struct speedo_private *)dev->priv;
      	long ioaddr = dev->base_addr;
      
      	/* Start with a Tx threshold of 256 (0x..20.... 8 byte units). */
      	sp->tx_threshold = 0x01208000;
      
      	/* Set the segment registers to '0'. */
      	wait_for_cmd_done(ioaddr + SCBCmd);
      	outl(0, ioaddr + SCBPointer);
      	inl(ioaddr + SCBPointer); /* XXX */
      	outb(RxAddrLoad, ioaddr + SCBCmd);
      	wait_for_cmd_done(ioaddr + SCBCmd);
      	outb(CUCmdBase, ioaddr + SCBCmd);
      
      	/* Load the statistics block and rx ring addresses. */
      	wait_for_cmd_done(ioaddr + SCBCmd);
      	outl(sp->lstats_dma, ioaddr + SCBPointer);
      	inl(ioaddr + SCBPointer); /* XXX */
      	outb(CUStatsAddr, ioaddr + SCBCmd);
      	sp->lstats->done_marker = 0;
      
1017  	if (sp->rx_ringp[sp->cur_rx % RX_RING_SIZE] == NULL) {
1018  		if (speedo_debug > 2)
      			printk(KERN_DEBUG "%s: NULL cur_rx in speedo_resume().\n",
      					dev->name);
1021  	} else {
      		wait_for_cmd_done(ioaddr + SCBCmd);
      		outl(sp->rx_ring_dma[sp->cur_rx % RX_RING_SIZE],
      			 ioaddr + SCBPointer);
      		outb(RxStart, ioaddr + SCBCmd);
      	}
      
      	wait_for_cmd_done(ioaddr + SCBCmd);
      	outb(CUDumpStats, ioaddr + SCBCmd);
      	udelay(30);
      
      	/* Fill the first command with our physical address. */
      	{
      		struct descriptor *ias_cmd;
      
      		ias_cmd =
      			(struct descriptor *)&sp->tx_ring[sp->cur_tx++ % TX_RING_SIZE];
      		/* Avoid a bug(?!) here by marking the command already completed. */
      		ias_cmd->cmd_status = cpu_to_le32((CmdSuspend | CmdIASetup) | 0xa000);
      		ias_cmd->link =
      			cpu_to_le32(TX_RING_ELEM_DMA(sp, sp->cur_tx % TX_RING_SIZE));
      		memcpy(ias_cmd->params, dev->dev_addr, 6);
      		sp->last_cmd = ias_cmd;
      	}
      
      	/* Start the chip's Tx process and unmask interrupts. */
      	wait_for_cmd_done(ioaddr + SCBCmd);
      	outl(cpu_to_le32(TX_RING_ELEM_DMA(sp, sp->dirty_tx % TX_RING_SIZE)),
      		 ioaddr + SCBPointer);
      	/* We are not ACK-ing FCP and ER in the interrupt handler yet so they should
      	   remain masked --Dragan */
      	outw(CUStart | SCBMaskEarlyRx | SCBMaskFlowCtl, ioaddr + SCBCmd);
      }
      
      /* Media monitoring and control. */
1056  static void speedo_timer(unsigned long data)
      {
      	struct net_device *dev = (struct net_device *)data;
      	struct speedo_private *sp = (struct speedo_private *)dev->priv;
      	long ioaddr = dev->base_addr;
      	int phy_num = sp->phy[0] & 0x1f;
      
      	/* We have MII and lost link beat. */
1064  	if ((sp->phy[0] & 0x8000) == 0) {
      		int partner = mdio_read(ioaddr, phy_num, 5);
1066  		if (partner != sp->partner) {
      			int flow_ctrl = sp->advertising & partner & 0x0400 ? 1 : 0;
1068  			if (speedo_debug > 2) {
      				printk(KERN_DEBUG "%s: Link status change.\n", dev->name);
      				printk(KERN_DEBUG "%s: Old partner %x, new %x, adv %x.\n",
      					   dev->name, sp->partner, partner, sp->advertising);
      			}
      			sp->partner = partner;
1074  			if (flow_ctrl != sp->flow_ctrl) {
      				sp->flow_ctrl = flow_ctrl;
      				sp->rx_mode = -1;	/* Trigger a reload. */
      			}
      			/* Clear sticky bit. */
      			mdio_read(ioaddr, phy_num, 1);
      			/* If link beat has returned... */
1081  			if (mdio_read(ioaddr, phy_num, 1) & 0x0004)
      				dev->flags |= IFF_RUNNING;
1083  			else
      				dev->flags &= ~IFF_RUNNING;
      		}
      	}
1087  	if (speedo_debug > 3) {
      		printk(KERN_DEBUG "%s: Media control tick, status %4.4x.\n",
      			   dev->name, inw(ioaddr + SCBStatus));
      	}
      	if (sp->rx_mode < 0  ||
1092  		(sp->rx_bug  && jiffies - sp->last_rx_time > 2*HZ)) {
      		/* We haven't received a packet in a Long Time.  We might have been
      		   bitten by the receiver hang bug.  This can be cleared by sending
      		   a set multicast list command. */
1096  		if (speedo_debug > 3)
      			printk(KERN_DEBUG "%s: Sending a multicast list set command"
      				   " from a timer routine,"
      				   " m=%d, j=%ld, l=%ld.\n",
      				   dev->name, sp->rx_mode, jiffies, sp->last_rx_time);
      		set_rx_mode(dev);
      	}
      	/* We must continue to monitor the media. */
      	sp->timer.expires = RUN_AT(2*HZ); 			/* 2.0 sec. */
      	add_timer(&sp->timer);
      #if defined(timer_exit)
      	timer_exit(&sp->timer);
      #endif
      }
      
1111  static void speedo_show_state(struct net_device *dev)
      {
      	struct speedo_private *sp = (struct speedo_private *)dev->priv;
      	int i;
      
      	/* Print a few items for debugging. */
1117  	if (speedo_debug > 0) {
      		int i;
      		printk(KERN_DEBUG "%s: Tx ring dump,  Tx queue %u / %u:\n", dev->name,
      			   sp->cur_tx, sp->dirty_tx);
1121  		for (i = 0; i < TX_RING_SIZE; i++)
      			printk(KERN_DEBUG "%s:  %c%c%2d %8.8x.\n", dev->name,
      				   i == sp->dirty_tx % TX_RING_SIZE ? '*' : ' ',
      				   i == sp->cur_tx % TX_RING_SIZE ? '=' : ' ',
      				   i, sp->tx_ring[i].status);
      	}
      	printk(KERN_DEBUG "%s: Printing Rx ring"
      		   " (next to receive into %u, dirty index %u).\n",
      		   dev->name, sp->cur_rx, sp->dirty_rx);
      
1131  	for (i = 0; i < RX_RING_SIZE; i++)
      		printk(KERN_DEBUG "%s: %c%c%c%2d %8.8x.\n", dev->name,
      			   sp->rx_ringp[i] == sp->last_rxf ? 'l' : ' ',
      			   i == sp->dirty_rx % RX_RING_SIZE ? '*' : ' ',
      			   i == sp->cur_rx % RX_RING_SIZE ? '=' : ' ',
      			   i, (sp->rx_ringp[i] != NULL) ?
      					   (unsigned)sp->rx_ringp[i]->status : 0);
      
      #if 0
      	{
      		long ioaddr = dev->base_addr;
      		int phy_num = sp->phy[0] & 0x1f;
      		for (i = 0; i < 16; i++) {
      			/* FIXME: what does it mean?  --SAW */
      			if (i == 6) i = 21;
      			printk(KERN_DEBUG "%s:  PHY index %d register %d is %4.4x.\n",
      				   dev->name, phy_num, i, mdio_read(ioaddr, phy_num, i));
      		}
      	}
      #endif
      
      }
      
      /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
      static void
1156  speedo_init_rx_ring(struct net_device *dev)
      {
      	struct speedo_private *sp = (struct speedo_private *)dev->priv;
      	struct RxFD *rxf, *last_rxf = NULL;
      	dma_addr_t last_rxf_dma = 0 /* to shut up the compiler */;
      	int i;
      
      	sp->cur_rx = 0;
      
1165  	for (i = 0; i < RX_RING_SIZE; i++) {
      		struct sk_buff *skb;
      		skb = dev_alloc_skb(PKT_BUF_SZ + sizeof(struct RxFD));
      		sp->rx_skbuff[i] = skb;
1169  		if (skb == NULL)
1170  			break;			/* OK.  Just initially short of Rx bufs. */
      		skb->dev = dev;			/* Mark as being used by this device. */
      		rxf = (struct RxFD *)skb->tail;
      		sp->rx_ringp[i] = rxf;
      		sp->rx_ring_dma[i] =
      			pci_map_single(sp->pdev, rxf,
      					PKT_BUF_SZ + sizeof(struct RxFD), PCI_DMA_BIDIRECTIONAL);
      		skb_reserve(skb, sizeof(struct RxFD));
1178  		if (last_rxf) {
      			last_rxf->link = cpu_to_le32(sp->rx_ring_dma[i]);
      			pci_dma_sync_single(sp->pdev, last_rxf_dma,
      					sizeof(struct RxFD), PCI_DMA_TODEVICE);
      		}
      		last_rxf = rxf;
      		last_rxf_dma = sp->rx_ring_dma[i];
      		rxf->status = cpu_to_le32(0x00000001);	/* '1' is flag value only. */
      		rxf->link = 0;						/* None yet. */
      		/* This field unused by i82557. */
      		rxf->rx_buf_addr = 0xffffffff;
      		rxf->count = cpu_to_le32(PKT_BUF_SZ << 16);
      		pci_dma_sync_single(sp->pdev, sp->rx_ring_dma[i],
      				sizeof(struct RxFD), PCI_DMA_TODEVICE);
      	}
      	sp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
      	/* Mark the last entry as end-of-list. */
      	last_rxf->status = cpu_to_le32(0xC0000002);	/* '2' is flag value only. */
      	pci_dma_sync_single(sp->pdev, sp->rx_ring_dma[RX_RING_SIZE-1],
      			sizeof(struct RxFD), PCI_DMA_TODEVICE);
      	sp->last_rxf = last_rxf;
      	sp->last_rxf_dma = last_rxf_dma;
      }
      
1202  static void speedo_purge_tx(struct net_device *dev)
      {
      	struct speedo_private *sp = (struct speedo_private *)dev->priv;
      	int entry;
      
1207  	while ((int)(sp->cur_tx - sp->dirty_tx) > 0) {
      		entry = sp->dirty_tx % TX_RING_SIZE;
1209  		if (sp->tx_skbuff[entry]) {
      			sp->stats.tx_errors++;
      			pci_unmap_single(sp->pdev,
      					le32_to_cpu(sp->tx_ring[entry].tx_buf_addr0),
      					sp->tx_skbuff[entry]->len, PCI_DMA_TODEVICE);
      			dev_kfree_skb_irq(sp->tx_skbuff[entry]);
      			sp->tx_skbuff[entry] = 0;
      		}
      		sp->dirty_tx++;
      	}
1219  	while (sp->mc_setup_head != NULL) {
      		struct speedo_mc_block *t;
1221  		if (speedo_debug > 1)
      			printk(KERN_DEBUG "%s: freeing mc frame.\n", dev->name);
      		pci_unmap_single(sp->pdev, sp->mc_setup_head->frame_dma,
      				sp->mc_setup_head->len, PCI_DMA_TODEVICE);
      		t = sp->mc_setup_head->next;
      		kfree(sp->mc_setup_head);
      		sp->mc_setup_head = t;
      	}
      	sp->mc_setup_tail = NULL;
      	sp->tx_full = 0;
      	netif_wake_queue(dev);
      }
      
1234  static void reset_mii(struct net_device *dev)
      {
      	struct speedo_private *sp = (struct speedo_private *)dev->priv;
      	long ioaddr = dev->base_addr;
      	/* Reset the MII transceiver, suggested by Fred Young @ scalable.com. */
1239  	if ((sp->phy[0] & 0x8000) == 0) {
      		int phy_addr = sp->phy[0] & 0x1f;
      		int advertising = mdio_read(ioaddr, phy_addr, 4);
      		int mii_bmcr = mdio_read(ioaddr, phy_addr, 0);
      		mdio_write(ioaddr, phy_addr, 0, 0x0400);
      		mdio_write(ioaddr, phy_addr, 1, 0x0000);
      		mdio_write(ioaddr, phy_addr, 4, 0x0000);
      		mdio_write(ioaddr, phy_addr, 0, 0x8000);
      #ifdef honor_default_port
      		mdio_write(ioaddr, phy_addr, 0, mii_ctrl[dev->default_port & 7]);
      #else
      		mdio_read(ioaddr, phy_addr, 0);
      		mdio_write(ioaddr, phy_addr, 0, mii_bmcr);
      		mdio_write(ioaddr, phy_addr, 4, advertising);
      #endif
      	}
      }
      
1257  static void speedo_tx_timeout(struct net_device *dev)
      {
      	struct speedo_private *sp = (struct speedo_private *)dev->priv;
      	long ioaddr = dev->base_addr;
      	int status = inw(ioaddr + SCBStatus);
      	unsigned long flags;
      
      	printk(KERN_WARNING "%s: Transmit timed out: status %4.4x "
      		   " %4.4x at %d/%d command %8.8x.\n",
      		   dev->name, status, inw(ioaddr + SCBCmd),
      		   sp->dirty_tx, sp->cur_tx,
      		   sp->tx_ring[sp->dirty_tx % TX_RING_SIZE].status);
      
      	speedo_show_state(dev);
      #if 0
      	if ((status & 0x00C0) != 0x0080
      		&&  (status & 0x003C) == 0x0010) {
      		/* Only the command unit has stopped. */
      		printk(KERN_WARNING "%s: Trying to restart the transmitter...\n",
      			   dev->name);
      		outl(cpu_to_le32(TX_RING_ELEM_DMA(sp, dirty_tx % TX_RING_SIZE])),
      			 ioaddr + SCBPointer);
      		outw(CUStart, ioaddr + SCBCmd);
      		reset_mii(dev);
      	} else {
      #else
      	{
      #endif
      		del_timer_sync(&sp->timer);
      		/* Reset the Tx and Rx units. */
      		outl(PortReset, ioaddr + SCBPort);
      		/* We may get spurious interrupts here.  But I don't think that they
      		   may do much harm.  1999/12/09 SAW */
      		udelay(10);
      		/* Disable interrupts. */
      		outw(SCBMaskAll, ioaddr + SCBCmd);
      		synchronize_irq();
      		speedo_tx_buffer_gc(dev);
      		/* Free as much as possible.
      		   It helps to recover from a hang because of out-of-memory.
      		   It also simplifies speedo_resume() in case TX ring is full or
      		   close-to-be full. */
      		speedo_purge_tx(dev);
      		speedo_refill_rx_buffers(dev, 1);
1301  		spin_lock_irqsave(&sp->lock, flags);
      		speedo_resume(dev);
      		sp->rx_mode = -1;
      		dev->trans_start = jiffies;
1305  		spin_unlock_irqrestore(&sp->lock, flags);
      		set_rx_mode(dev); /* it takes the spinlock itself --SAW */
      		/* Reset MII transceiver.  Do it before starting the timer to serialize
      		   mdio_xxx operations.  Yes, it's a paranoya :-)  2000/05/09 SAW */
      		reset_mii(dev);
      		sp->timer.expires = RUN_AT(2*HZ);
      		add_timer(&sp->timer);
      	}
1313  	return;
      }
      
      static int
1317  speedo_start_xmit(struct sk_buff *skb, struct net_device *dev)
      {
      	struct speedo_private *sp = (struct speedo_private *)dev->priv;
      	long ioaddr = dev->base_addr;
      	int entry;
      
      	{	/* Prevent interrupts from changing the Tx ring from underneath us. */
      		unsigned long flags;
      
1326  		spin_lock_irqsave(&sp->lock, flags);
      
      		/* Check if there are enough space. */
1329  		if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
      			printk(KERN_ERR "%s: incorrect tbusy state, fixed.\n", dev->name);
      			netif_stop_queue(dev);
      			sp->tx_full = 1;
1333  			spin_unlock_irqrestore(&sp->lock, flags);
1334  			return 1;
      		}
      
      		/* Calculate the Tx descriptor entry. */
      		entry = sp->cur_tx++ % TX_RING_SIZE;
      
      		sp->tx_skbuff[entry] = skb;
      		sp->tx_ring[entry].status =
      			cpu_to_le32(CmdSuspend | CmdTx | CmdTxFlex);
1343  		if (!(entry & ((TX_RING_SIZE>>2)-1)))
      			sp->tx_ring[entry].status |= cpu_to_le32(CmdIntr);
      		sp->tx_ring[entry].link =
      			cpu_to_le32(TX_RING_ELEM_DMA(sp, sp->cur_tx % TX_RING_SIZE));
      		sp->tx_ring[entry].tx_desc_addr =
      			cpu_to_le32(TX_RING_ELEM_DMA(sp, entry) + TX_DESCR_BUF_OFFSET);
      		/* The data region is always in one buffer descriptor. */
      		sp->tx_ring[entry].count = cpu_to_le32(sp->tx_threshold);
      		sp->tx_ring[entry].tx_buf_addr0 =
      			cpu_to_le32(pci_map_single(sp->pdev, skb->data,
      						   skb->len, PCI_DMA_TODEVICE));
      		sp->tx_ring[entry].tx_buf_size0 = cpu_to_le32(skb->len);
      		/* Trigger the command unit resume. */
      		wait_for_cmd_done(ioaddr + SCBCmd);
      		clear_suspend(sp->last_cmd);
      		/* We want the time window between clearing suspend flag on the previous
      		   command and resuming CU to be as small as possible.
      		   Interrupts in between are very undesired.  --SAW */
      		outb(CUResume, ioaddr + SCBCmd);
      		sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry];
      
      		/* Leave room for set_rx_mode(). If there is no more space than reserved
      		   for multicast filter mark the ring as full. */
1366  		if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
      			netif_stop_queue(dev);
      			sp->tx_full = 1;
      		}
      
1371  		spin_unlock_irqrestore(&sp->lock, flags);
      	}
      
      	dev->trans_start = jiffies;
      
1376  	return 0;
      }
      
1379  static void speedo_tx_buffer_gc(struct net_device *dev)
      {
      	unsigned int dirty_tx;
      	struct speedo_private *sp = (struct speedo_private *)dev->priv;
      
      	dirty_tx = sp->dirty_tx;
1385  	while ((int)(sp->cur_tx - dirty_tx) > 0) {
      		int entry = dirty_tx % TX_RING_SIZE;
      		int status = le32_to_cpu(sp->tx_ring[entry].status);
      
1389  		if (speedo_debug > 5)
      			printk(KERN_DEBUG " scavenge candidate %d status %4.4x.\n",
      				   entry, status);
1392  		if ((status & StatusComplete) == 0)
1393  			break;			/* It still hasn't been processed. */
1394  		if (status & TxUnderrun)
1395  			if (sp->tx_threshold < 0x01e08000) {
1396  				if (speedo_debug > 2)
      					printk(KERN_DEBUG "%s: TX underrun, threshold adjusted.\n",
      						   dev->name);
      				sp->tx_threshold += 0x00040000;
      			}
      		/* Free the original skb. */
1402  		if (sp->tx_skbuff[entry]) {
      			sp->stats.tx_packets++;	/* Count only user packets. */
      			sp->stats.tx_bytes += sp->tx_skbuff[entry]->len;
      			pci_unmap_single(sp->pdev,
      					le32_to_cpu(sp->tx_ring[entry].tx_buf_addr0),
      					sp->tx_skbuff[entry]->len, PCI_DMA_TODEVICE);
      			dev_kfree_skb_irq(sp->tx_skbuff[entry]);
      			sp->tx_skbuff[entry] = 0;
      		}
      		dirty_tx++;
      	}
      
1414  	if (speedo_debug && (int)(sp->cur_tx - dirty_tx) > TX_RING_SIZE) {
      		printk(KERN_ERR "out-of-sync dirty pointer, %d vs. %d,"
      			   " full=%d.\n",
      			   dirty_tx, sp->cur_tx, sp->tx_full);
      		dirty_tx += TX_RING_SIZE;
      	}
      
      	while (sp->mc_setup_head != NULL
1422  		   && (int)(dirty_tx - sp->mc_setup_head->tx - 1) > 0) {
      		struct speedo_mc_block *t;
1424  		if (speedo_debug > 1)
      			printk(KERN_DEBUG "%s: freeing mc frame.\n", dev->name);
      		pci_unmap_single(sp->pdev, sp->mc_setup_head->frame_dma,
      				sp->mc_setup_head->len, PCI_DMA_TODEVICE);
      		t = sp->mc_setup_head->next;
      		kfree(sp->mc_setup_head);
      		sp->mc_setup_head = t;
      	}
1432  	if (sp->mc_setup_head == NULL)
      		sp->mc_setup_tail = NULL;
      
      	sp->dirty_tx = dirty_tx;
      }
      
      /* The interrupt handler does all of the Rx thread work and cleans up
         after the Tx thread. */
1440  static void speedo_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
      {
      	struct net_device *dev = (struct net_device *)dev_instance;
      	struct speedo_private *sp;
      	long ioaddr, boguscnt = max_interrupt_work;
      	unsigned short status;
      
      #ifndef final_version
1448  	if (dev == NULL) {
      		printk(KERN_ERR "speedo_interrupt(): irq %d for unknown device.\n", irq);
1450  		return;
      	}
      #endif
      
      	ioaddr = dev->base_addr;
      	sp = (struct speedo_private *)dev->priv;
      
      #ifndef final_version
      	/* A lock to prevent simultaneous entry on SMP machines. */
1459  	if (test_and_set_bit(0, (void*)&sp->in_interrupt)) {
      		printk(KERN_ERR"%s: SMP simultaneous entry of an interrupt handler.\n",
      			   dev->name);
      		sp->in_interrupt = 0;	/* Avoid halting machine. */
1463  		return;
      	}
      #endif
      
1467  	do {
      		status = inw(ioaddr + SCBStatus);
      		/* Acknowledge all of the current interrupt sources ASAP. */
      		/* Will change from 0xfc00 to 0xff00 when we start handling
      		   FCP and ER interrupts --Dragan */
      		outw(status & 0xfc00, ioaddr + SCBStatus);
      
1474  		if (speedo_debug > 4)
      			printk(KERN_DEBUG "%s: interrupt  status=%#4.4x.\n",
      				   dev->name, status);
      
1478  		if ((status & 0xfc00) == 0)
1479  			break;
      
      		/* Always check if all rx buffers are allocated.  --SAW */
      		speedo_refill_rx_buffers(dev, 0);
      
      		if ((status & 0x5000) ||	/* Packet received, or Rx error. */
1485  			(sp->rx_ring_state&(RrNoMem|RrPostponed)) == RrPostponed)
      									/* Need to gather the postponed packet. */
      			speedo_rx(dev);
      
1489  		if (status & 0x1000) {
      			spin_lock(&sp->lock);
1491  			if ((status & 0x003c) == 0x0028) {		/* No more Rx buffers. */
      				struct RxFD *rxf;
      				printk(KERN_WARNING "%s: card reports no RX buffers.\n",
      						dev->name);
      				rxf = sp->rx_ringp[sp->cur_rx % RX_RING_SIZE];
1496  				if (rxf == NULL) {
1497  					if (speedo_debug > 2)
      						printk(KERN_DEBUG
      								"%s: NULL cur_rx in speedo_interrupt().\n",
      								dev->name);
      					sp->rx_ring_state |= RrNoMem|RrNoResources;
1502  				} else if (rxf == sp->last_rxf) {
1503  					if (speedo_debug > 2)
      						printk(KERN_DEBUG
      								"%s: cur_rx is last in speedo_interrupt().\n",
      								dev->name);
      					sp->rx_ring_state |= RrNoMem|RrNoResources;
1508  				} else
      					outb(RxResumeNoResources, ioaddr + SCBCmd);
1510  			} else if ((status & 0x003c) == 0x0008) { /* No resources. */
      				struct RxFD *rxf;
      				printk(KERN_WARNING "%s: card reports no resources.\n",
      						dev->name);
      				rxf = sp->rx_ringp[sp->cur_rx % RX_RING_SIZE];
1515  				if (rxf == NULL) {
1516  					if (speedo_debug > 2)
      						printk(KERN_DEBUG
      								"%s: NULL cur_rx in speedo_interrupt().\n",
      								dev->name);
      					sp->rx_ring_state |= RrNoMem|RrNoResources;
1521  				} else if (rxf == sp->last_rxf) {
1522  					if (speedo_debug > 2)
      						printk(KERN_DEBUG
      								"%s: cur_rx is last in speedo_interrupt().\n",
      								dev->name);
      					sp->rx_ring_state |= RrNoMem|RrNoResources;
1527  				} else {
      					/* Restart the receiver. */
      					outl(sp->rx_ring_dma[sp->cur_rx % RX_RING_SIZE],
      						 ioaddr + SCBPointer);
      					outb(RxStart, ioaddr + SCBCmd);
      				}
      			}
      			sp->stats.rx_errors++;
1535  			spin_unlock(&sp->lock);
      		}
      
1538  		if ((sp->rx_ring_state&(RrNoMem|RrNoResources)) == RrNoResources) {
      			printk(KERN_WARNING
      					"%s: restart the receiver after a possible hang.\n",
      					dev->name);
      			spin_lock(&sp->lock);
      			/* Restart the receiver.
      			   I'm not sure if it's always right to restart the receiver
      			   here but I don't know another way to prevent receiver hangs.
      			   1999/12/25 SAW */
      			outl(sp->rx_ring_dma[sp->cur_rx % RX_RING_SIZE],
      				 ioaddr + SCBPointer);
      			outb(RxStart, ioaddr + SCBCmd);
      			sp->rx_ring_state &= ~RrNoResources;
1551  			spin_unlock(&sp->lock);
      		}
      
      		/* User interrupt, Command/Tx unit interrupt or CU not active. */
1555  		if (status & 0xA400) {
      			spin_lock(&sp->lock);
      			speedo_tx_buffer_gc(dev);
      			if (sp->tx_full
1559  				&& (int)(sp->cur_tx - sp->dirty_tx) < TX_QUEUE_UNFULL) {
      				/* The ring is no longer full. */
      				sp->tx_full = 0;
      				netif_wake_queue(dev); /* Attention: under a spinlock.  --SAW */
      			}
1564  			spin_unlock(&sp->lock);
      		}
      
1567  		if (--boguscnt < 0) {
      			printk(KERN_ERR "%s: Too much work at interrupt, status=0x%4.4x.\n",
      				   dev->name, status);
      			/* Clear all interrupt sources. */
      			/* Will change from 0xfc00 to 0xff00 when we start handling
      			   FCP and ER interrupts --Dragan */
      			outw(0xfc00, ioaddr + SCBStatus);
1574  			break;
      		}
1576  	} while (1);
      
1578  	if (speedo_debug > 3)
      		printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
      			   dev->name, inw(ioaddr + SCBStatus));
      
      	clear_bit(0, (void*)&sp->in_interrupt);
1583  	return;
      }
      
1586  static inline struct RxFD *speedo_rx_alloc(struct net_device *dev, int entry)
      {
      	struct speedo_private *sp = (struct speedo_private *)dev->priv;
      	struct RxFD *rxf;
      	struct sk_buff *skb;
      	/* Get a fresh skbuff to replace the consumed one. */
      	skb = dev_alloc_skb(PKT_BUF_SZ + sizeof(struct RxFD));
      	sp->rx_skbuff[entry] = skb;
1594  	if (skb == NULL) {
      		sp->rx_ringp[entry] = NULL;
1596  		return NULL;
      	}
      	rxf = sp->rx_ringp[entry] = (struct RxFD *)skb->tail;
      	sp->rx_ring_dma[entry] =
      		pci_map_single(sp->pdev, rxf,
      					   PKT_BUF_SZ + sizeof(struct RxFD), PCI_DMA_FROMDEVICE);
      	skb->dev = dev;
      	skb_reserve(skb, sizeof(struct RxFD));
      	rxf->rx_buf_addr = 0xffffffff;
      	pci_dma_sync_single(sp->pdev, sp->rx_ring_dma[entry],
      			sizeof(struct RxFD), PCI_DMA_TODEVICE);
1607  	return rxf;
      }
      
1610  static inline void speedo_rx_link(struct net_device *dev, int entry,
      								  struct RxFD *rxf, dma_addr_t rxf_dma)
      {
      	struct speedo_private *sp = (struct speedo_private *)dev->priv;
      	rxf->status = cpu_to_le32(0xC0000001); 	/* '1' for driver use only. */
      	rxf->link = 0;			/* None yet. */
      	rxf->count = cpu_to_le32(PKT_BUF_SZ << 16);
      	sp->last_rxf->link = cpu_to_le32(rxf_dma);
      	sp->last_rxf->status &= cpu_to_le32(~0xC0000000);
      	pci_dma_sync_single(sp->pdev, sp->last_rxf_dma,
      			sizeof(struct RxFD), PCI_DMA_TODEVICE);
      	sp->last_rxf = rxf;
      	sp->last_rxf_dma = rxf_dma;
      }
      
1625  static int speedo_refill_rx_buf(struct net_device *dev, int force)
      {
      	struct speedo_private *sp = (struct speedo_private *)dev->priv;
      	int entry;
      	struct RxFD *rxf;
      
      	entry = sp->dirty_rx % RX_RING_SIZE;
1632  	if (sp->rx_skbuff[entry] == NULL) {
      		rxf = speedo_rx_alloc(dev, entry);
1634  		if (rxf == NULL) {
      			unsigned int forw;
      			int forw_entry;
1637  			if (speedo_debug > 2 || !(sp->rx_ring_state & RrOOMReported)) {
      				printk(KERN_WARNING "%s: can't fill rx buffer (force %d)!\n",
      						dev->name, force);
      				speedo_show_state(dev);
      				sp->rx_ring_state |= RrOOMReported;
      			}
1643  			if (!force)
1644  				return -1;	/* Better luck next time!  */
      			/* Borrow an skb from one of next entries. */
1646  			for (forw = sp->dirty_rx + 1; forw != sp->cur_rx; forw++)
1647  				if (sp->rx_skbuff[forw % RX_RING_SIZE] != NULL)
1648  					break;
1649  			if (forw == sp->cur_rx)
1650  				return -1;
      			forw_entry = forw % RX_RING_SIZE;
      			sp->rx_skbuff[entry] = sp->rx_skbuff[forw_entry];
      			sp->rx_skbuff[forw_entry] = NULL;
      			rxf = sp->rx_ringp[forw_entry];
      			sp->rx_ringp[forw_entry] = NULL;
      			sp->rx_ringp[entry] = rxf;
      		}
1658  	} else {
      		rxf = sp->rx_ringp[entry];
      	}
      	speedo_rx_link(dev, entry, rxf, sp->rx_ring_dma[entry]);
      	sp->dirty_rx++;
      	sp->rx_ring_state &= ~(RrNoMem|RrOOMReported); /* Mark the progress. */
1664  	return 0;
      }
      
1667  static void speedo_refill_rx_buffers(struct net_device *dev, int force)
      {
      	struct speedo_private *sp = (struct speedo_private *)dev->priv;
      
      	/* Refill the RX ring. */
      	while ((int)(sp->cur_rx - sp->dirty_rx) > 0 &&
1673  			speedo_refill_rx_buf(dev, force) != -1);
      }
      
      static int
1677  speedo_rx(struct net_device *dev)
      {
      	struct speedo_private *sp = (struct speedo_private *)dev->priv;
      	int entry = sp->cur_rx % RX_RING_SIZE;
      	int rx_work_limit = sp->dirty_rx + RX_RING_SIZE - sp->cur_rx;
      	int alloc_ok = 1;
      
1684  	if (speedo_debug > 4)
      		printk(KERN_DEBUG " In speedo_rx().\n");
      	/* If we own the next entry, it's a new packet. Send it up. */
1687  	while (sp->rx_ringp[entry] != NULL) {
      		int status;
      		int pkt_len;
      
      		pci_dma_sync_single(sp->pdev, sp->rx_ring_dma[entry],
      			sizeof(struct RxFD), PCI_DMA_FROMDEVICE);
      		status = le32_to_cpu(sp->rx_ringp[entry]->status);
      		pkt_len = le32_to_cpu(sp->rx_ringp[entry]->count) & 0x3fff;
      
1696  		if (!(status & RxComplete))
1697  			break;
      
1699  		if (--rx_work_limit < 0)
1700  			break;
      
      		/* Check for a rare out-of-memory case: the current buffer is
      		   the last buffer allocated in the RX ring.  --SAW */
1704  		if (sp->last_rxf == sp->rx_ringp[entry]) {
      			/* Postpone the packet.  It'll be reaped at an interrupt when this
      			   packet is no longer the last packet in the ring. */
1707  			if (speedo_debug > 2)
      				printk(KERN_DEBUG "%s: RX packet postponed!\n",
      					   dev->name);
      			sp->rx_ring_state |= RrPostponed;
1711  			break;
      		}
      
1714  		if (speedo_debug > 4)
      			printk(KERN_DEBUG "  speedo_rx() status %8.8x len %d.\n", status,
      				   pkt_len);
1717  		if ((status & (RxErrTooBig|RxOK|0x0f90)) != RxOK) {
1718  			if (status & RxErrTooBig)
      				printk(KERN_ERR "%s: Ethernet frame overran the Rx buffer, "
      					   "status %8.8x!\n", dev->name, status);
1721  			else if (! (status & RxOK)) {
      				/* There was a fatal error.  This *should* be impossible. */
      				sp->stats.rx_errors++;
      				printk(KERN_ERR "%s: Anomalous event in speedo_rx(), "
      					   "status %8.8x.\n",
      					   dev->name, status);
      			}
1728  		} else {
      			struct sk_buff *skb;
      
      			/* Check if the packet is long enough to just accept without
      			   copying to a properly sized skbuff. */
      			if (pkt_len < rx_copybreak
1734  				&& (skb = dev_alloc_skb(pkt_len + 2)) != 0) {
      				skb->dev = dev;
      				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
      				/* 'skb_put()' points to the start of sk_buff data area. */
      				pci_dma_sync_single(sp->pdev, sp->rx_ring_dma[entry],
      					sizeof(struct RxFD) + pkt_len, PCI_DMA_FROMDEVICE);
      
      #if 1 || USE_IP_CSUM
      				/* Packet is in one chunk -- we can copy + cksum. */
      				eth_copy_and_sum(skb, sp->rx_skbuff[entry]->tail, pkt_len, 0);
      				skb_put(skb, pkt_len);
      #else
      				memcpy(skb_put(skb, pkt_len), sp->rx_skbuff[entry]->tail,
      					   pkt_len);
      #endif
1749  			} else {
      				/* Pass up the already-filled skbuff. */
      				skb = sp->rx_skbuff[entry];
1752  				if (skb == NULL) {
      					printk(KERN_ERR "%s: Inconsistent Rx descriptor chain.\n",
      						   dev->name);
1755  					break;
      				}
      				sp->rx_skbuff[entry] = NULL;
      				skb_put(skb, pkt_len);
      				sp->rx_ringp[entry] = NULL;
      				pci_unmap_single(sp->pdev, sp->rx_ring_dma[entry],
      						PKT_BUF_SZ + sizeof(struct RxFD), PCI_DMA_FROMDEVICE);
      			}
      			skb->protocol = eth_type_trans(skb, dev);
      			netif_rx(skb);
      			sp->stats.rx_packets++;
      			sp->stats.rx_bytes += pkt_len;
      		}
      		entry = (++sp->cur_rx) % RX_RING_SIZE;
      		sp->rx_ring_state &= ~RrPostponed;
      		/* Refill the recently taken buffers.
      		   Do it one-by-one to handle traffic bursts better. */
1772  		if (alloc_ok && speedo_refill_rx_buf(dev, 0) == -1)
      			alloc_ok = 0;
      	}
      
      	/* Try hard to refill the recently taken buffers. */
      	speedo_refill_rx_buffers(dev, 1);
      
      	sp->last_rx_time = jiffies;
      
1781  	return 0;
      }
      
      static int
1785  speedo_close(struct net_device *dev)
      {
      	long ioaddr = dev->base_addr;
      	struct speedo_private *sp = (struct speedo_private *)dev->priv;
      	int i;
      
      	netdevice_stop(dev);
      	netif_stop_queue(dev);
      
1794  	if (speedo_debug > 1)
      		printk(KERN_DEBUG "%s: Shutting down ethercard, status was %4.4x.\n",
      			   dev->name, inw(ioaddr + SCBStatus));
      
      	/* Shut off the media monitoring timer. */
      	del_timer_sync(&sp->timer);
      
      	/* Shutting down the chip nicely fails to disable flow control. So.. */
      	outl(PortPartialReset, ioaddr + SCBPort);
      
      	free_irq(dev->irq, dev);
      
      	/* Print a few items for debugging. */
1807  	if (speedo_debug > 3)
      		speedo_show_state(dev);
      
          /* Free all the skbuffs in the Rx and Tx queues. */
1811  	for (i = 0; i < RX_RING_SIZE; i++) {
      		struct sk_buff *skb = sp->rx_skbuff[i];
      		sp->rx_skbuff[i] = 0;
      		/* Clear the Rx descriptors. */
1815  		if (skb) {
      			pci_unmap_single(sp->pdev,
      					 sp->rx_ring_dma[i],
      					 PKT_BUF_SZ + sizeof(struct RxFD), PCI_DMA_FROMDEVICE);
      			dev_kfree_skb(skb);
      		}
      	}
      
1823  	for (i = 0; i < TX_RING_SIZE; i++) {
      		struct sk_buff *skb = sp->tx_skbuff[i];
      		sp->tx_skbuff[i] = 0;
      		/* Clear the Tx descriptors. */
1827  		if (skb) {
      			pci_unmap_single(sp->pdev,
      					 le32_to_cpu(sp->tx_ring[i].tx_buf_addr0),
      					 skb->len, PCI_DMA_TODEVICE);
      			dev_kfree_skb(skb);
      		}
      	}
      
      	/* Free multicast setting blocks. */
1836  	for (i = 0; sp->mc_setup_head != NULL; i++) {
      		struct speedo_mc_block *t;
      		t = sp->mc_setup_head->next;
      		kfree(sp->mc_setup_head);
      		sp->mc_setup_head = t;
      	}
      	sp->mc_setup_tail = NULL;
1843  	if (speedo_debug > 0)
      		printk(KERN_DEBUG "%s: %d multicast blocks dropped.\n", dev->name, i);
      
      	pci_set_power_state(sp->pdev, 2);
      
1848  	MOD_DEC_USE_COUNT;
      
1850  	return 0;
      }
      
      /* The Speedo-3 has an especially awkward and unusable method of getting
         statistics out of the chip.  It takes an unpredictable length of time
         for the dump-stats command to complete.  To avoid a busy-wait loop we
         update the stats with the previous dump results, and then trigger a
         new dump.
      
         Oh, and incoming frames are dropped while executing dump-stats!
         */
      static struct net_device_stats *
1862  speedo_get_stats(struct net_device *dev)
      {
      	struct speedo_private *sp = (struct speedo_private *)dev->priv;
      	long ioaddr = dev->base_addr;
      
      	/* Update only if the previous dump finished. */
1868  	if (sp->lstats->done_marker == le32_to_cpu(0xA007)) {
      		sp->stats.tx_aborted_errors += le32_to_cpu(sp->lstats->tx_coll16_errs);
      		sp->stats.tx_window_errors += le32_to_cpu(sp->lstats->tx_late_colls);
      		sp->stats.tx_fifo_errors += le32_to_cpu(sp->lstats->tx_underruns);
      		sp->stats.tx_fifo_errors += le32_to_cpu(sp->lstats->tx_lost_carrier);
      		/*sp->stats.tx_deferred += le32_to_cpu(sp->lstats->tx_deferred);*/
      		sp->stats.collisions += le32_to_cpu(sp->lstats->tx_total_colls);
      		sp->stats.rx_crc_errors += le32_to_cpu(sp->lstats->rx_crc_errs);
      		sp->stats.rx_frame_errors += le32_to_cpu(sp->lstats->rx_align_errs);
      		sp->stats.rx_over_errors += le32_to_cpu(sp->lstats->rx_resource_errs);
      		sp->stats.rx_fifo_errors += le32_to_cpu(sp->lstats->rx_overrun_errs);
      		sp->stats.rx_length_errors += le32_to_cpu(sp->lstats->rx_runt_errs);
      		sp->lstats->done_marker = 0x0000;
1881  		if (netif_running(dev)) {
      			unsigned long flags;
      			/* Take a spinlock to make wait_for_cmd_done and sending the
      			   command atomic.  --SAW */
1885  			spin_lock_irqsave(&sp->lock, flags);
      			wait_for_cmd_done(ioaddr + SCBCmd);
      			outb(CUDumpStats, ioaddr + SCBCmd);
1888  			spin_unlock_irqrestore(&sp->lock, flags);
      		}
      	}
1891  	return &sp->stats;
      }
      
1894  static int speedo_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
      {
      	struct speedo_private *sp = (struct speedo_private *)dev->priv;
      	long ioaddr = dev->base_addr;
      	u16 *data = (u16 *)&rq->ifr_data;
      	int phy = sp->phy[0] & 0x1f;
      	int saved_acpi;
      	int t;
      
1903      switch(cmd) {
1904  	case SIOCDEVPRIVATE:		/* Get the address of the PHY in use. */
      		data[0] = phy;
1906  	case SIOCDEVPRIVATE+1:		/* Read the specified MII register. */
      		/* FIXME: these operations need to be serialized with MDIO
      		   access from the timeout handler.
      		   They are currently serialized only with MDIO access from the
      		   timer routine.  2000/05/09 SAW */
      		saved_acpi = pci_set_power_state(sp->pdev, 0);
      		t = del_timer_sync(&sp->timer);
      		data[3] = mdio_read(ioaddr, data[0], data[1]);
1914  		if (t)
      			add_timer(&sp->timer); /* may be set to the past  --SAW */
      		pci_set_power_state(sp->pdev, saved_acpi);
1917  		return 0;
1918  	case SIOCDEVPRIVATE+2:		/* Write the specified MII register */
1919  		if (!capable(CAP_NET_ADMIN))
1920  			return -EPERM;
      		saved_acpi = pci_set_power_state(sp->pdev, 0);
      		t = del_timer_sync(&sp->timer);
      		mdio_write(ioaddr, data[0], data[1], data[2]);
1924  		if (t)
      			add_timer(&sp->timer); /* may be set to the past  --SAW */
      		pci_set_power_state(sp->pdev, saved_acpi);
1927  		return 0;
1928  	default:
1929  		return -EOPNOTSUPP;
      	}
      }
      
      /* Set or clear the multicast filter for this adaptor.
         This is very ugly with Intel chips -- we usually have to execute an
         entire configuration command, plus process a multicast command.
         This is complicated.  We must put a large configuration command and
         an arbitrarily-sized multicast command in the transmit list.
         To minimize the disruption -- the previous command might have already
         loaded the link -- we convert the current command block, normally a Tx
         command, into a no-op and link it to the new command.
      */
1942  static void set_rx_mode(struct net_device *dev)
      {
      	struct speedo_private *sp = (struct speedo_private *)dev->priv;
      	long ioaddr = dev->base_addr;
      	struct descriptor *last_cmd;
      	char new_rx_mode;
      	unsigned long flags;
      	int entry, i;
      
1951  	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
      		new_rx_mode = 3;
      	} else if ((dev->flags & IFF_ALLMULTI)  ||
1954  			   dev->mc_count > multicast_filter_limit) {
      		new_rx_mode = 1;
1956  	} else
      		new_rx_mode = 0;
      
1959  	if (speedo_debug > 3)
      		printk(KERN_DEBUG "%s: set_rx_mode %d -> %d\n", dev->name,
      				sp->rx_mode, new_rx_mode);
      
1963  	if ((int)(sp->cur_tx - sp->dirty_tx) > TX_RING_SIZE - TX_MULTICAST_SIZE) {
      	    /* The Tx ring is full -- don't add anything!  Hope the mode will be
      		 * set again later. */
      		sp->rx_mode = -1;
1967  		return;
      	}
      
1970  	if (new_rx_mode != sp->rx_mode) {
      		u8 *config_cmd_data;
      
1973  		spin_lock_irqsave(&sp->lock, flags);
      		entry = sp->cur_tx++ % TX_RING_SIZE;
      		last_cmd = sp->last_cmd;
      		sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry];
      
      		sp->tx_skbuff[entry] = 0;			/* Redundant. */
      		sp->tx_ring[entry].status = cpu_to_le32(CmdSuspend | CmdConfigure);
      		sp->tx_ring[entry].link =
      			cpu_to_le32(TX_RING_ELEM_DMA(sp, (entry + 1) % TX_RING_SIZE));
      		config_cmd_data = (void *)&sp->tx_ring[entry].tx_desc_addr;
      		/* Construct a full CmdConfig frame. */
      		memcpy(config_cmd_data, i82558_config_cmd, CONFIG_DATA_SIZE);
      		config_cmd_data[1] = (txfifo << 4) | rxfifo;
      		config_cmd_data[4] = rxdmacount;
      		config_cmd_data[5] = txdmacount + 0x80;
      		config_cmd_data[15] |= (new_rx_mode & 2) ? 1 : 0;
      		/* 0x80 doesn't disable FC 0x84 does.
      		   Disable Flow control since we are not ACK-ing any FC interrupts
      		   for now. --Dragan */
      		config_cmd_data[19] = 0x84;
      		config_cmd_data[19] |= sp->full_duplex ? 0x40 : 0;
      		config_cmd_data[21] = (new_rx_mode & 1) ? 0x0D : 0x05;
1995  		if (sp->phy[0] & 0x8000) {			/* Use the AUI port instead. */
      			config_cmd_data[15] |= 0x80;
      			config_cmd_data[8] = 0;
      		}
      		/* Trigger the command unit resume. */
      		wait_for_cmd_done(ioaddr + SCBCmd);
      		clear_suspend(last_cmd);
      		outb(CUResume, ioaddr + SCBCmd);
2003  		if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
      			netif_stop_queue(dev);
      			sp->tx_full = 1;
      		}
2007  		spin_unlock_irqrestore(&sp->lock, flags);
      	}
      
2010  	if (new_rx_mode == 0  &&  dev->mc_count < 4) {
      		/* The simple case of 0-3 multicast list entries occurs often, and
      		   fits within one tx_ring[] entry. */
      		struct dev_mc_list *mclist;
      		u16 *setup_params, *eaddrs;
      
2016  		spin_lock_irqsave(&sp->lock, flags);
      		entry = sp->cur_tx++ % TX_RING_SIZE;
      		last_cmd = sp->last_cmd;
      		sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry];
      
      		sp->tx_skbuff[entry] = 0;
      		sp->tx_ring[entry].status = cpu_to_le32(CmdSuspend | CmdMulticastList);
      		sp->tx_ring[entry].link =
      			cpu_to_le32(TX_RING_ELEM_DMA(sp, (entry + 1) % TX_RING_SIZE));
      		sp->tx_ring[entry].tx_desc_addr = 0; /* Really MC list count. */
      		setup_params = (u16 *)&sp->tx_ring[entry].tx_desc_addr;
      		*setup_params++ = cpu_to_le16(dev->mc_count*6);
      		/* Fill in the multicast addresses. */
2029  		for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
      			 i++, mclist = mclist->next) {
      			eaddrs = (u16 *)mclist->dmi_addr;
      			*setup_params++ = *eaddrs++;
      			*setup_params++ = *eaddrs++;
      			*setup_params++ = *eaddrs++;
      		}
      
      		wait_for_cmd_done(ioaddr + SCBCmd);
      		clear_suspend(last_cmd);
      		/* Immediately trigger the command unit resume. */
      		outb(CUResume, ioaddr + SCBCmd);
      
2042  		if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
      			netif_stop_queue(dev);
      			sp->tx_full = 1;
      		}
2046  		spin_unlock_irqrestore(&sp->lock, flags);
2047  	} else if (new_rx_mode == 0) {
      		struct dev_mc_list *mclist;
      		u16 *setup_params, *eaddrs;
      		struct speedo_mc_block *mc_blk;
      		struct descriptor *mc_setup_frm;
      		int i;
      
      		mc_blk = kmalloc(sizeof(*mc_blk) + 2 + multicast_filter_limit*6,
      						 GFP_ATOMIC);
2056  		if (mc_blk == NULL) {
      			printk(KERN_ERR "%s: Failed to allocate a setup frame.\n",
      				   dev->name);
      			sp->rx_mode = -1; /* We failed, try again. */
2060  			return;
      		}
      		mc_blk->next = NULL;
      		mc_blk->len = 2 + multicast_filter_limit*6;
      		mc_blk->frame_dma =
      			pci_map_single(sp->pdev, &mc_blk->frame, mc_blk->len,
      					PCI_DMA_TODEVICE);
      		mc_setup_frm = &mc_blk->frame;
      
      		/* Fill the setup frame. */
2070  		if (speedo_debug > 1)
      			printk(KERN_DEBUG "%s: Constructing a setup frame at %p.\n",
      				   dev->name, mc_setup_frm);
      		mc_setup_frm->cmd_status =
      			cpu_to_le32(CmdSuspend | CmdIntr | CmdMulticastList);
      		/* Link set below. */
      		setup_params = (u16 *)&mc_setup_frm->params;
      		*setup_params++ = cpu_to_le16(dev->mc_count*6);
      		/* Fill in the multicast addresses. */
2079  		for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
      			 i++, mclist = mclist->next) {
      			eaddrs = (u16 *)mclist->dmi_addr;
      			*setup_params++ = *eaddrs++;
      			*setup_params++ = *eaddrs++;
      			*setup_params++ = *eaddrs++;
      		}
      
      		/* Disable interrupts while playing with the Tx Cmd list. */
2088  		spin_lock_irqsave(&sp->lock, flags);
      
2090  		if (sp->mc_setup_tail)
      			sp->mc_setup_tail->next = mc_blk;
2092  		else
      			sp->mc_setup_head = mc_blk;
      		sp->mc_setup_tail = mc_blk;
      		mc_blk->tx = sp->cur_tx;
      
      		entry = sp->cur_tx++ % TX_RING_SIZE;
      		last_cmd = sp->last_cmd;
      		sp->last_cmd = mc_setup_frm;
      
      		/* Change the command to a NoOp, pointing to the CmdMulti command. */
      		sp->tx_skbuff[entry] = 0;
      		sp->tx_ring[entry].status = cpu_to_le32(CmdNOp);
      		sp->tx_ring[entry].link = cpu_to_le32(mc_blk->frame_dma);
      
      		/* Set the link in the setup frame. */
      		mc_setup_frm->link =
      			cpu_to_le32(TX_RING_ELEM_DMA(sp, (entry + 1) % TX_RING_SIZE));
      
      		pci_dma_sync_single(sp->pdev, mc_blk->frame_dma,
      				mc_blk->len, PCI_DMA_TODEVICE);
      
      		wait_for_cmd_done(ioaddr + SCBCmd);
      		clear_suspend(last_cmd);
      		/* Immediately trigger the command unit resume. */
      		outb(CUResume, ioaddr + SCBCmd);
      
2118  		if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
      			netif_stop_queue(dev);
      			sp->tx_full = 1;
      		}
2122  		spin_unlock_irqrestore(&sp->lock, flags);
      
2124  		if (speedo_debug > 5)
      			printk(" CmdMCSetup frame length %d in entry %d.\n",
      				   dev->mc_count, entry);
      	}
      
      	sp->rx_mode = new_rx_mode;
      }
      
      #ifdef CONFIG_EEPRO100_PM
      static void eepro100_suspend(struct pci_dev *pdev)
      {
      	struct net_device *dev = pdev->driver_data;
      	long ioaddr = dev->base_addr;
      
      	netif_device_detach(dev);
      	outl(PortPartialReset, ioaddr + SCBPort);
      	
      	/* XXX call pci_set_power_state ()? */
      }
      
      static void eepro100_resume(struct pci_dev *pdev)
      {
      	struct net_device *dev = pdev->driver_data;
      	struct speedo_private *sp = (struct speedo_private *)dev->priv;
      	long ioaddr = dev->base_addr;
      
      	/* I'm absolutely uncertain if this part of code may work.
      	   The problems are:
      	    - correct hardware reinitialization;
      		- correct driver behavior between different steps of the
      		  reinitialization;
      		- serialization with other driver calls.
      	   2000/03/08  SAW */
      	outw(SCBMaskAll, ioaddr + SCBCmd);
      	speedo_resume(dev);
      	netif_device_attach(dev);
      	sp->rx_mode = -1;
      	sp->flow_ctrl = sp->partner = 0;
      	set_rx_mode(dev);
      }
      #endif /* CONFIG_EEPRO100_PM */
      
2166  static void __devexit eepro100_remove_one (struct pci_dev *pdev)
      {
      	struct net_device *dev = pdev->driver_data;
      	struct speedo_private *sp = (struct speedo_private *)dev->priv;
      	
      	unregister_netdev(dev);
      
      	release_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1));
      	release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
      
      #ifndef USE_IO
      	iounmap((char *)dev->base_addr);
      #endif
      
      	pci_free_consistent(pdev, TX_RING_SIZE * sizeof(struct TxFD)
      								+ sizeof(struct speedo_stats),
      						sp->tx_ring, sp->tx_ring_dma);
      	kfree(dev);
      }
      
      static struct pci_device_id eepro100_pci_tbl[] __devinitdata = {
      	{ PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557,
      		PCI_ANY_ID, PCI_ANY_ID, },
      	{ PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER,
      		PCI_ANY_ID, PCI_ANY_ID, },
      	{ PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ID1029,
      		PCI_ANY_ID, PCI_ANY_ID, },
      	{ PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ID1030,
      		PCI_ANY_ID, PCI_ANY_ID, },
      	{ PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82820FW_4,
      		PCI_ANY_ID, PCI_ANY_ID, },
      	{ 0,}
      };
      MODULE_DEVICE_TABLE(pci, eepro100_pci_tbl);
      	
      static struct pci_driver eepro100_driver = {
      	name:		"eepro100",
      	id_table:	eepro100_pci_tbl,
      	probe:		eepro100_init_one,
      	remove:		eepro100_remove_one,
      #ifdef CONFIG_EEPRO100_PM
      	suspend:	eepro100_suspend,
      	resume:		eepro100_resume,
      #endif
      };
      
      #if LINUX_VERSION_CODE < KERNEL_VERSION(2,3,48)
      static int pci_module_init(struct pci_driver *pdev)
      {
      	int rc;
      
      	rc = pci_register_driver(pdev);
      	if (rc <= 0) {
      		printk(KERN_INFO "%s: No cards found, driver not installed.\n",
      			   pdev->name);
      		pci_unregister_driver(pdev);
      		return -ENODEV;
      	}
      	return 0;
      }
      #endif
      
2228  static int __init eepro100_init_module(void)
      {
2230  	if (debug >= 0 && speedo_debug != debug)
      		printk(KERN_INFO "eepro100.c: Debug level is %d.\n", debug);
2232  	if (debug >= 0)
      		speedo_debug = debug;
      
2235  	return pci_module_init(&eepro100_driver);
      }
      
2238  static void __exit eepro100_cleanup_module(void)
      {
      	pci_unregister_driver(&eepro100_driver);
      }
      
      module_init(eepro100_init_module);
      module_exit(eepro100_cleanup_module);
      
      /*
       * Local variables:
       *  compile-command: "gcc -DMODULE -D__KERNEL__ -I/usr/src/linux/net/inet -Wall -Wstrict-prototypes -O6 -c eepro100.c `[ -f /usr/include/linux/modversions.h ] && echo -DMODVERSIONS`"
       *  c-indent-level: 4
       *  c-basic-offset: 4
       *  tab-width: 4
       * End:
       */