
IIAA

i

Testwell CMT++

Complexity Measurement

Tool for C/C++/C#

User's Guide
Version 7.0

ii
iiiiiiiiiiiiii

CMT++ - Complexity Measurement Tool for C/C++/C# User's
Guide

This document reflects the CMT++ product version 7.0

March 2019 (document upgrade v6.0 –-> v7.0)

August 2015 (document upgrade v5.0 –-> v6.0)

June 2012 (document upgrade v4.2 --> v5.0)

September 2007 (document upgrade v4.1 --> v4.2)

December 2005 (document upgrade v4.0 --> v4.1)

January 2005 (document upgraded v3.5 --> v4.0)

December 2003 (document upgraded v3.4 --> v3.5)

August 2002 (document upgraded v3.3 --> v3.4)

February 2002 (document upgrade v3.2 --> v3.3)

May 2001 (document upgrade v3.1 --> v3.2)

October 1999 (document upgrade v3.0 --> v3.1)

Copyright (c) 1993-2013 Testwell Oy

Copyright (c) 2013-2019 Verifysoft Technology GmbH

All distinctive marks are properties of their respective holders.

Verifysoft Technology GmbH

Technologiepark Offenburg

In der Spoeck 10-12

D-77656 Offenburg, Germany

URL. http://www.verifysoft.com

About This Guide

iii
iii

Contents

1. ABOUT THIS GUIDE .. 1

1.1. Overall ... 1
1.2. About This Version of CMT++ ... 2

2. INTRODUCING CMT++ ... 3

2.1. About CMT++ and Complexity Metrics ... 3
2.2. Measures Calculated by CMT++ .. 5
2.3. CMT++ Tool Components .. 7

3. INSTALLING CMT++ ... 8

4. CONFIGURING CMT++ ... 9

4.1. Measure Alarm Limit Parameters ... 10
4.2. Excel Field Separator .. 14
4.3. C# Code Handling Parameters .. 14
4.4. Assembly Code Handling Parameters ... 14
4.5. Software Licence Parameters .. 15
4.6. Hardware Control Key Port ... 15
4.7. Link to Floating License Manager... 16

5. USING CMT++ .. 17

5.1. Overall Architecture .. 17
5.2. Starting cmt from the Command Line ... 19
5.3. Using cmt Interactively ... 23
5.4. Piping Source File Names to cmt .. 24
5.5. Reading the Actual Source File from stdin ... 25
5.6. Example ... 25
5.7. Using cmt2html Utility .. 51

6. INTERPRETING COMPLEXITY MEASURES ... 57

6.1. Lines-of-Code Metrics .. 57
6.2. Cyclomatic number. .. 58
6.3. Maximun nesting depth ... 60
6.4. Number of function parameters ... 60
6.5. Volume (V) ... 60
6.6. Estimate for Delivered Bugs (B) ... 60
6.7. Maintainability Index (MI/MIwoc) ... 61
6.8. Complexity, Quality Assurance, and Testing .. 62

APPENDIX A. THE SOURCE CODE LANGUAGE .. 65

APPENDIX B. HOW THE MEASURES ARE CALCULATED.................................. 67

iv
iviviviviviviv

B.1. Lines of code Metrics ... 67
B.2. Halstead Metrics ... 68
B.3. McCabe Metrics ... 72
B.4. Maximum nesting depth ... 75
B.5. Maintainability Index .. 76

APPENDIX C. MEASURING ASSEMBLY CODE .. 79

C.1 Measuring Complete Assembly Files .. 79
C.2 Measuring Assembly Code Inside A C/C++ File .. 80
C.3 Recognizing A Comment from An Assembly Code ... 80
C.4 Parsing Assembly Identifiers ... 81
C.5 Lines-Of-Code Measuring from Assembly Code .. 81
C.6 McCabe Measuring from Assembly Code... 82
C.7 Halstead Measuring from Assembly Code .. 82

APPENDIX D. CMT ERROR MESSAGES ... 83

APPENDIX E. CMT2HTML ERROR MESSAGES ... 87

INDEX .. 88

Intro Int

1
1

1. About This Guide

1.1. Overall

This guide is written for the Testwell CMT++, Complexity

Measurement Tool for C/C++/C#, version 7.0. Hereinafter called

just shortly as CMT++.

CMT++ is available on many platforms including Windows and

several Unix environments. This guide is intended to be used in all

of those environments and describes the basic functionality and

command line based use of CMT++.

On Windows platform CMT++ can be used via a graphical user

interface (GUI). Effectively it is a graphical program layer for

using the basic command line mode of CMT++ and for easily

viewing the generated CMT++ reports. The CMT++ GUI has its

own on-line help and it is not described in this guide.

The examples of this guide have been worked up at the command

line prompt of a Windows machine. If your environment is

something else, you should have no problems in understanding the

examples and in transforming them to your environment, because

effectively the only differences are in the syntax of file names.

This guide is organized as follows:

 Chapter “2. Introducing CMT++” describes the properties

and purpose of the system.

 Chapter “3. Installing CMT++” describes the overall

arrangements of all CMT++ installations.

 Chapter “4. Configuring CMT++” describes how you can

configure CMT++ and set ‘company standards’.

2
2

 Chapter “5. Using CMT++” gives the operating instructions

of CMT++ for getting the various report types (text, XML,

Excel, HTML).

 Chapter “6. Interpreting Complexity Measures” discusses the

interpretation and use of the software metrics calculated by

CMT++.

 "Appendix A. The Source Code Language" describes the

way CMT++ analyzes C/C++/C# source code.

 "Appendix B. How the Measures Are Calculated" specifies

how the individual complexity measures are calculated from

the source code.

 "Appendix C. Measuring Assembly Code" describes how

assembly code is measured.

 "Appendix D. cmt Error Messages" tells the cmt tool error

messages.

 “Appendix E. cmt2html Error Messages“ tells the cmt2html

tool error messages.

 Finally there is "Index".

1.2. About This Version of CMT++

Testwell CMT++, Complexity Measurement Tool for C/C++/C#,

Version 7.0, follows the version v6.0 (from August 2015).

File VERSION.TXT describes the more detailed history of

changes in successive versions of CMT++. The initial CMT++

version was developed in 1990.

IIAA

3

2. Introducing CMT++

2.1. About CMT++ and Complexity Metrics

Testwell CMT++ - Complexity Measurement Tool for C/C++/C# ,

is a tool for analyzing the static complexity and size properties of

code written in C, C++ or C#. Also assembly code, either inlined

in a C/C++ file or from a separate file, can be measured.

The code complexity is known to correlate with the defect rate and

robustness of the application program as illustrated in the figure

below:

 Software

 complexity

 Testability Maintainability

 Defect rate

Figure: How software complexity affects quality attributes and

testing.

The figure emphasizes firstly that complex code is difficult to test.

And when it is difficult to test, probably more errors remain

unrevealed in the final program. Secondly, complex code will be

more error-prone in itself and affect the defect rate of the final

program. And thirdly, complex code is difficult to maintain. And

4

being so, again, it is likely that more errors find their way to the

final program.

There are also cost aspects here, because the testing and

maintenance are major sources of the costs in software projects,

too. The costs of bad quality and erroneous programs can be very

high, sometimes crucial to a company. Some of these costs can be

attributed to unnecessarily complex code.

Now, the question is: Do we have any means to locate the complex

code so that we could avoid these risks.

CMT++ is a tool, which can be used for measuring the complexity

of C, C++ and C# code. The measures include McCabe's

cyclomatic number, various lines-of-code metrics, Halstead's

metrics and Maintainability Index (MI).

These measures can be used in assessing the quality of the code.

Based on the static properties of the program code, CMT++ gives

estimates how error prone the program source code is due to its

complexity, how long it will take to understand the code, what is

the logical volume of the code, etc. The project team usually has

not time to inspect all the code produced by the project. CMT++

can assist in locating the modules, which are most likely to cause

problems in the future.

The oldest way to estimate the complexity of a program is to count

the number of source lines. However, this measure depends on the

formatting of the code, on the programming language, on the

programming style, and is insensitive to the actual logic of the

program.

Several more specific and accurate measures have been developed:

 the number of actual program lines (LOCpro), where pure

comments and blank lines are ignored

 the cyclomatic number (v(G)), which measures the number

of conditional branches in the flow of control

 the program volume (V), which is a measure of the

information contents of a program

 estimate of the number of programming errors (B)

5

 estimate of the time needed to implement or understand the

program code (T)

No measure as such is a magic number that can distinguish good

programs from bad ones. But a set of different characteristic values

can be used for filtering out potential candidates for further

inspection.

2.2. Measures Calculated by CMT++

CMT++ reads in a set of C, C++ or C# source files and calculates

the following software measures for them:

 McCabe's cyclomatic number

 Lines-of-code metrics

 Number of semicolons

 Maximum nesting depth of {} in functions

 Number of function parameters

 Halstead's metrics

 Maintainability index

McCabe's cyclomatic number is a single quantity:

v(G) The cyclomatic number. This measure estimates the

control flow complexity of the code.

v(G) is reported per functions, per files and per over all files.

Lines-of-code metrics include four quantities:

LOCbl The number of blank lines.

LOCcom The number lines with comments. (These lines may

also contain program code.)

LOCphy The number of physical lines.

LOCpro The number of lines with program code. (These lines

may also contain comments.)

6

The above lines-of-code measures are reported per functions, per

files and per over all files.

Number of semicolons is calculated over all files that are measured

in one CMT++ run. The semicolons that are in string or character

literals or in comment text are excluded from the figure.

Maximum nesting depth of {}s (MaxND) is calculated on each

function. It is somewhat related to the algorithmic complexity

v(G) and is an indication on how deep the algorithmic nesting

structure is in a function. MaxMD is reported per functions and per

files.

Number of parameters is calculated and reported per functions.

Halstead's metrics consists of the following quantities:

B Number of delivered bugs. This quantity is an estimate

of the number of bugs in the program.

D Difficulty level, error-proneness.

E Effort to implement.

L Program level. This quantity represents the abstraction

level of the program.

N Program length.

N1 Number of operators.

N2 Number of operands.

n Vocabulary size or number of unique operators and

unique operands.

n1 Number of unique operators.

n2 Number of unique operands.

T Implementation time (or time to understand).

V Program volume or information contents of the

program.

7

The above Halstead measured are reported per functions and per

files.

The lines-of-code, McCabe and Halstead measures are further

calculated with certain formulae to a MI (Maintainability Index)

measure.

MI Maintainability Index.

MIwoc Maintainability Index without comments.

MIcw Maintainability Index comment weight.

The above MI measures are reported per functions, per files and

per over all files.

In the normal course of work, CMT++ is used to calculate the

above measures from the non-preprocessed source files (when C or

C++ code). They are the work results of the programmers and they

are the ones that need to be maintained.

C-preprocessed source files can also be fed to CMT++. However,

note that "flattening" the #include files, conditional compilation

and resolving of macros may cause the input file to be quite

different to the non-preprocessed file.

The actual formulas for calculating the measures are presented in

"Appendix B. How the Measures Are Calculated".

2.3. CMT++ Tool Components

cmt: The "basic CMT++ tool", which reads the input source

files and produces a textual report of them.

cmt2html: A Perl utility for converting a textual CMT++ report

into HTML form.

cmtui: (On Windows only) The CMT++ GUI for using the

CMT++ tool component graphically.

8

3. Installing CMT++

On Windows platforms the installation is performed by
InstallShield. On Unix platforms the installation is
performed by a makefile, which you can edit to meet your
needs and then execute for copying the tool files to their
correct places.

One the delivered files is README.TXT or INSTALL.TXT.
You should view it before starting the actual installation. It
gives you the necessary instructions for performing the
actual installation on your platform. Depending on the
platform 3-9 MB free disk space is needed.

You need not have a C/C++/C# compiler available in the
environment where you use CMT++.If there are any
platform-specific special usage notes, you can find then from
the README.TXT file from the installation directory.

IIAA

9

4. Configuring CMT++

CMT++'s behavior can be tuned by modifying the configuration

parameters in the configuration file cmt.ini with any text editor.

The configuration file contains the CMT++ alarm limit parameters

and some other tool behavior settings.

The definition of a configuration parameter has the following

syntax:

 PARAMETER-NAME=PARAMETER-VALUE

There must not be spaces around the equal sign. A line whose first

non-whitespace character is '#' is considered a comment. Empty

lines can be used.

Parameter names are case-sensitive. Some of the parameters are

used for the software license identification and must not be

modified by the user.

You can use environment variables in a configuration file. A

construct '$(ENV_VAR_NAME)' is replaced with the value of the

corresponding environment variable (with empty, if the

environment variable is not known).

CMT++ searches and reads configuration files from a number of

places. See section "5.2. Starting cmt from the Command Line" for a

description of the command line parameter -c (configuration) and

for the searched locations. A configuration parameter definition

read later (from the same file or from another file) overrides any

previously read definition.

The configuration parameters are described below.

10

4.1. Measure Alarm Limit Parameters

Most configuration parameters are used to define the acceptable

limits of the complexity measures.

The limits are defined by a pair of integer valued configuration

parameters. For example, the configuration parameters

V_FILE_MIN and V_FILE_MAX define the lowest and highest

acceptable values for source file volume (V). If volume of some

file is out of these limits, CMT++ marks it with a minus sign, ‘-’,

in the complexity measures report (short form). In the html

representation of the report the alarms are additionally highlighted

with red color.

The configuration file in the installation disk contains default

settings for the measure limit parameters but you can modify them

for project specific needs. The limit parameters are listed below.

The limits are discussed further in the chapter "6. Interpreting Complexity

Measures".

COMMENT_RATIO_FILE MIN and

COMMENT_RATIO_FILE_MAX

Specify the lowest and highest acceptable values for the ratio

of comment lines and total source code lines for a whole file.

The value is a percentage number (100 * LOCcom /

LOCphy), no decimals.

COMMENT_RATIO_FUNCTION_MIN and

COMMENT_RATIO_FUNCTION_MAX

Specify the lowest and highest acceptable values for the ratio

of comment lines and total source code lines for a single

function. The value is a percentage number (100 * LOCcom

/ LOCphy), no decimals.

COMMENT_FUNCTION_MIN

Specify the absolute minimum number of comment lines that

a function should have. If the convention is to use comment

a block before the actual function code, the definition

NOTICE_LEADING_COMMENTS=1 should also be used.

11

NOTICE_LEADING_COMMENTS

Specify whether the comment lines from a comment block

immediately preceding a function definition should be

counted and associated to function lines, and also to its

comment lines. Value 1 means yes, value 0 means no. This

algorithm is a bit heuristic. The preceding comment block is

recognized and associated to the function that follows it, if

there are no other code lines between the comment block and

the beginning of the function. After the comment block there

can be zero or more empty lines. If there is an intermediate

empty line (that is not enclosed in /* ... */ commenting)

between the comment block, it breaks the comment block

counting and association to the following function. There

can be both /* ...*/ comments and // comments in the

comment block.

NO_COMMENT_WARNINGS_BELOW

Specify, in LOCpro, the size of entity (function or file) of

whose commenting ratio CMT++ does not give any

warnings. For example, sometimes, small only a few line

functions are self-evident and have no comments at all or

they may have a multiline comment block causing CMT++

to complain of the commenting ratio (LOCcom/LOCphy).

LOC_FUNCTION_MIN and LOC_FUNCTION_MAX

Specify the lowest and highest acceptable number of

executable lines (LOCpro) per function.

DESTRUCTOR_LOC_MIN

Specify the lowest acceptable number of LOCpro per a

destructor function. In many cases, especially if the code has

been initially generated by a tool, destructor functions are

quite small. With this definition you can give on destructor

functions a lower acceptable LOCpro limit than

LOC_FUNCTION_MIN would give, and you do not get

alarms of them in the complexity measures report.

LOC_FILE_MIN and LOC_FILE_MAX

12

Specify the lowest and highest acceptable number of

executable lines (LOCpro) per source file.

B_FILE_MIN and B_FILE_MAX

Specify the lowest and highest acceptable number of errors

per source file. "Error" means here the value of the

complexity measure estimating the error proneness of a file

(B).

B_CORRECTION_FACTOR

Argument is a positive decimal number, default 1.0. The B

value (estimated number of bugs) is first calculated as it is

defined by Halstead. Then, before displaying the B value to

the reports and comparing it against the B-limits, it is

multiplied with the given correction factor.

Some “industry practioners” consider that the original

Halstead B measure should be adjusted to get better

estimative value to it. This configuration parameter is

CMT++’s way to do such adjustment.

V_FUNCTION_MIN and V_FUNCTION_MAX

Specify the lowest and highest acceptable volume (V) of a

single function.

DESTRUCTOR_V_MIN

Specify the lowest acceptable volume (V) of a single

destructor function. On destructor function this definition

overrides V_FUNCTION_MIN. Otherwise the rationale with

this definition is similar as with LOC_FUNCTION_MIN

and DESTRUCTOR_LOC_MIN.

V_FILE_MIN and V_FILE_MAX

Specify the lowest and highest acceptable volume (V) of a

source file.

MCCABE_FUNCTION_MIN and MCCABE_FUNCTION_MAX

13

Specify the lowest and highest acceptable values for

McCabe's cyclomatic number (v(G)) per function.

MCCABE_FILE_MIN and MCCABE_FILE_MAX

Specify the lowest and highest acceptable values for

McCabe's cyclomatic number (v(G)) per source file.

MCCABE_PREFERENCE

Specify in what “flavor” the MCCABE v(G) is calculated.

The possible argument values are:

 basic: Operators &&, || are not counted to v(G).

 extended: Operators operator &&, || are counted to

v(G). Initially, when CMT++ is installed, this setting is

made active.

 basic_modified: Like basic, but ‘case n’ labels are not

counted to v(G) while ‘switch()’ gives +1 to v(G).

 extended_modified: Like extended, but each ‘case n’

gives +1 to v(G) and ‘switch()’ has no effect to v(G).

MI_PREFERENCE

The possible argument values are MI or MIwoc. The

argument specifies:

 which one, Maintainability Index [with comments]

(MI) or Maintainability Index without comments

(MIwoc) is shown in the default short form textual

CMT++ report,

 and do the MI_FUNCTION_MIN and MI_FILE_MIN

limit values apply on the MI or MIwoc measures

correspondingly.

MI_FILE_MIN

Specify the lowest acceptable Maintainability Index (MI or

MIwoc) value of a single file.

14

MI_FUNCTION_MIN

Specify the lowest acceptable Maintainability Index (MI or

MIwoc) value of a single function.

4.2. Excel Field Separator

With the -x option CMT++ produces its output to a text file in a

form, which is suitable for Excel (or a similar spreadsheet utility)

input file. With setting

EXCEL_FIELD_SEPARATOR

Specify the ASCII value of the character, which will be used

as a field separator in the file. For example, the value 9

means tab character ('\t') and 59 means a semicolon (';').

4.3. C# Code Handling Parameters

CSHARP_FILE_EXTENSIONS

Initially CMT++ was designed to measure C and C++ code,

where C was considered to be subset of C++. Support on C#

was added later. Because C# has some special language

constructs (compared to C++), for correct parsing, CMT++

needs to know if the input is C/C++ or C#.

If the input file has one of the extensions listed in this

setting, CMT++ takes the code to be C#, Normally this

setting has only CSHARP_FILE_EXTENSIONS=cs.

4.4. Assembly Code Handling Parameters

ASSEMBLY_FILE_EXTENSIONS

Specify the file extensions, which CMT++ should consider

to be assembly files and measure as assembly code. For

example, with ASSEMBLY_FILE_EXTENSIONS=asm,s,as

setting the files, whose names end on ".asm", ".s" and ".as"

15

are measured as assembly files. Use no spaces in the

argument.

ASSEMBLY_ID_ADDON_CHARACTERS

When parsing assembly code, either from a totally separate

assembly file or from a C/C++ file (inlined assembly), the

specified characters are additionally associated to belong

into assembly identifiers. For example, the setting might be

ASSEMBLY_ID_ADDON_CHARACTERS=.@ .

Corollary, when parsing assembly code, identifiers like

".abc.def@123" and "__AZaz19$.@" are considered as one

assembler identifier. When CMT++ knows it parses C/C++

code, the characters associated into one identifier can be

composed of A-Z, a-z, 1-9, _ and $.

ASSEMBLY_COMMENT_CHARACTER

When parsing assembly code, either from a totally separate

assembly file or from a C/C++ file (inlined assembly), the

specified character is considered to start assembly comment

(line-comment, to the end of the line). For example, the

following might be a reasonable definition for many

assemblers: ASSEMBLY_COMMENT_CHARACTER=; .

4.5. Software Licence Parameters

The configuration parameters TOOL, USER, COMPUTER,

LICENCE, EXPIRATION, NOTE1, NOTE2, NOTE3, NOTE4,

NOTE5, TARGET_CHECK and CONTROL are used for

identifying the CMT++ software license. Do not modify their

settings. If they are modified in an unauthorized way, CMT++ will

not work any more.

4.6. Hardware Control Key Port

This parameter is needed only in environments (PC), where a

hardware control key, which is plugged into a parallel port,

controls the license. The port number is the number of the user

16

selectable LPT port where the control key is attached to. For

example, the following definition is correct.

 KEYPORT=1

Remark: Hardware control key (dongle) based license control is no

more in use. This parameter is a relic of some old versions, where

it still was supported.

4.7. Link to Floating License Manager

In some environments the license may be controlled by FLEXlm

license manager. The license may be a floating license or a node-

locked license. The parameter FLEXLM_LICENSE_FILE

specifies the path and name of the testwell.lic (or testwell.dat)

license file, or port and host of the license manager daemon.

Examples:

 FLEXLM_LICENSE_FILE=27000@flxserver

Floating license. License manager daemon runs on machine

flxserver, port 27000 will be used.

 FLEXLM_LICENSE_FILE=@flxserver

Like above, but FLEXlm finds the port number to use.

 FLEXLM_LICENSE_FILE=

Perhaps a floating license, but the connection is found by

environment variables LM_LICENSE_FILE or

TESTWELLD_LICENSE_FILE, or based on the value of

TESTWELLD_LICENSE_FILE in registry (Windows), or based

on the file $(HOME)/.flexlmrc (Unix).

IIAA

17

5. Using CMT++

5.1. Overall Architecture

Simply, CMT++ is a tool, which analyzes a set of C, C++, C# or

assembly source files and writes a textual complexity measures

report of them. You can select by command-line parameters what

kind of report will be written. With some add-on tools the report

can be processed further into other representations.The next

pictures show the major alternatives to use the "CMT++ tool

chain". Usage is from command line. On Windows there is

additionally a GUI to use the same.

Default, human readable reporting.

source
files to be
measured

 cmt

command line
options

default, short
report

 cmt2html

 HTML form

human readable, print,
edit, …

HTML browser…

alarm
limits

18

XML-reporting. Usable in "build integrations".

JSON-reporting. Usable in "build integrations".

source
files to be
measured

 cmt

Long report
(XML form)

alarm
limits

-l[f] and other
cmd line options

XML tool…

source
files to be
measured

 cmt

Long report
(JSON form)

alarm
limits

-j[f] and other
cmd line options

Node.js, etc

19

Excel reporting.

5.2. Starting cmt from the Command Line

CMT++ is started from the command line in one of the following

ways:

For getting a short or a somewhat longer on-line help:

 cmt -h | -H

For producing a short tabular form of the report (default format,

textual, can be viewed with any text editor and/or worked onwards

to HTML form):

 cmt [confsettings] [-v] [-s] [-w] [-f filenames] [-o outfile]

[sourcefile...]

For producing a long form of the report (XML format, textual):

 cmt [confsettings] [-v] -l[f] [-s] [-f filenames] [-o outfile]

[sourcefile...]

For producing a long form of the report (JSON format, textual):

 cmt [confsettings] [-v] -j[f] [-s] [-f filenames] [-o outfile]

[sourcefile...]

source
files to be
measured

 cmt

Excel report
(csv form)

alarm
limits

-x and other
command line
options

Excel…

20

For producing an Excel input file form of the report (textual):):

 cmt [confsettings] [-v] -x [-nxh] [-s] [-w] [-f filenames]

 [-o outfile] [sourcefile...]

Where the confsettings is [-c conffiles] [-C confparam=value]...

The above four alternatives to invoke CMT++ specify also the

allowed combinations of the options.

The meanings of the command line options and arguments are:

-h ("small help) Displays a synopsis of the command line

options. If -h option is given, the command line must not

contain other arguments.

-H ("big help") Displays a few screens of general help about

CMT++. If -H option is given, the command line must not

contain other arguments.

-c conffiles

 ("additional configurations") Specifies one or more

configuration files to be read by CMT++ after to the default

locations for configuration files have been searched. If more

than one file is given, they must be separated by a semicolon.

There must be one space after the -c option but, if multiple

configuration files are specified, no spaces around the ';'s. An

example:

-c e:\grpdir\grpsettings.ini;e:\prjdir\prjdir\prjsettings.ini.

 The configuration files are searched from the following

places in order (a later definition overrides a previous one):

 1) File /usr/local/lib/cmt/cmt/cmt.ini (Unix only).

2) File $HOME/lib/cmt/cmt.ini (Unix only).

3) File CMT.INI (in Unix cmt.ini) in the directory specified

by the environment variable CMTHOME.

4) file .cmt.ini in the user's home directory (Unix only).

5) file specified by the environment variable CMTINIT.

Multiple files can be specified, separated by a semicolon.

6) File CMT.INI in the current directory (file .cmt.ini in

21

Unix).

7) File(s) explicitly specified by the -c option.

 After the configuration files are loaded there still may come

explicit configuration parameter overridings with -C

command-line parameter.

-C confparam=value

 Override value of a configuration parameter (other than

license control parameter). There must be one space after -C

but no other spaces. There can be many -C options on the

command line.

-v ("verbose") Show on the screen what configuration files

CMT++ tried to find and loaded if the file was found.

-s ("summary") File level summary only. In the absence of this

option the output file contains measures both of the file

internal functions, classes and structs and of the file

summary level . (If the -x option is also present, the behavior

is slightly different, see below)

-w ("warnings only") Only lines that have a warning flag '-' are

written to the output file. Usable when producing the short

tabular form report or Excel data file. Can not be used with

long report.

-x ("excel output") The output file produced is of the Excel

input data file format. Normally, the -s option is not present

together with this -x option. In such a case the resultant

Excel data file contains measures of the functions in the file,

not any file summary level data. If both the -x and -s options

are present, the Excel data file contains only file summary

level data, not any function level data.

-nxh ("no excel header") When producing the Excel data file

output, no column headers are written to the first line of the

file, only the actual data lines.

22

-l ("long") CMT++ produces the complexity measures report in

a long format, in XML format, where all measures are

included.

-lf ("long with frequencies") CMT++ produces the complexity

measures report in the long format as with the -l option but

includes also operator and operand frequencies in the report.

-j ("json") CMT++ produces the complexity measures report in

a long format, in JSON format, where all measures are

included.

-jf ("json with frequencies") CMT++ produces the complexity

measures report in the long format as with the -j option but

includes also operator and operand frequencies in the report.

-f filenames

 ("file names") Specifies a text file that has the names of the

files to be measured, one file name on a line. #-starting lines

can be used as comments. Empty line or end-of-file ends the

file names list. If the -f option is present, there no more can

be source file names on the command line.

-o outfile

 ("output file") Specifies the output file. If the -o option is

present, it must be followed by a filename separated by a

space. The complexity measures report is then written to that

file (and silently overwriting the possible previous file with

that name). In the absence of this option the report is written

to stdout.

sourcefile...

 A list of the file names (separated by a space) to be

measured. Wildcards can be used. Character '-' means the file

stdin, i.e. the file to be measured is read from stdin. If no

source files are given, CMT++ prompts for the file names

interactively.

For example, the command

23

 cmt *.c

tells CMT++ to analyze all files in the working directory that have

the extension .c. The report is written in tabular format to stdout.

Whereas the command

 cmt -c johnscmt.ini -lf -o report.xml *.c reuse\fi*.cpp

tells CMT++ to

 analyze all C source files in the working directory and the

files whose names start with fi and whose extension is .cpp

in the subdirectory reuse.

 use the additional configuration settings in the file

johnscmt.ini.

 produce the report as long report (XML format) to the file

report.xml.

 report all possible measurements (long listing, operand

frequencies included).

5.3. Using cmt Interactively

If no source files are given on the command line, CMT++ prompts

them interactively from stdin. For example

C:\TESTDIR> cmt -o report.txt

* CMT++, Complexity Measurement Tool for C/C++/C#, Version 7.0 *

* *

* Copyright (c) 1993-2013 Testwell Oy *

* Copyright (c) 2013-2018 Verifysoft Technology GmbH *

Invoke the tool with option -h for help about CMT++.

Type '?' in a prompt for context sensitive help.

Type '!' in a prompt for visiting operating system.

Names of the source code files?

SOURCE (1) => file1.cpp

SOURCE (2) => file2.cpp

SOURCE (3) =>

Measuring file 1 2 Done

C:\TESTDIR>

The SOURCE (n) => prompt is repeated until your answer with an

empty line (or EOF is met in the reading). Here two files file1.cpp

and file2.cpp are measured and the results are written to the file

24

report.txt. The result file is of short tabular form (neither -x nor -l/-

lf nor -j/-jf options were present). As the report is written to a file

(-o option present), the screen is "free" and the text "Measuring file

1 2 Done" progress reporting is written to the screen.

You could have got the same behavior directly from the command

line with the command

C:\TESTDIR> cmt -o report.txt file1.cpp file2.cpp

or as follows

C:\TESTDIR> cmt file1.cpp file2.cpp > report.txt

or, if wildcard notation file?.cpp matches only to these two files, as

follows

C:\TESTDIR> cmt -o report.txt file?.cpp

5.4. Piping Source File Names to cmt

This style of using CMT++ is actually a variant of using CMT++

interactively. The difference is that the source file names are read

from a file, which is piped to stdin, instead of typing the file names

interactively from the terminal. An example:

C:\TESTDIR> cmt -o report.txt < files.lst

which is effectively the same as

C:\TESTDIR> cmt -f files.lst -o report.txt

You have prepared a text file files.lst, which contains the names of

the files to be measured, one file name at a line. CMT++ believes

to be running in the interactive mode and reads the answers to the

SOURCE (n) => prompts from the piped file. EOF (or when an

empty line is met) ends the source file name reading. In the file

files.lst the lines starting with the '#' character are comment lines.

Another example:

C:\TESTDIR> dir *.cpp /s /b | cmt -o report.txt

Here with the operating system command a bare file name listing

of *.cpp files is produced from the current directory including its

25

subdirectories. The file name list is piped to CMT++, which

produces the report.txt file.

Note that the following

C:\TESTDIR> dir *.cpp /s /b | cmt > report.txt

will not work smoothly, because the interactive mode tool header

box and source file prompting texts get also copied to the output

file.

5.5. Reading the Actual Source File from stdin

You recall that '-' as a source file name means stdin. This being so,

the following two commands are functionally equivalent:

C:\SOURCEDIR> type file1.cpp | cmt -o file1report.txt -

C:\SOURCEDIR> cmt -o file1report.txt file1.cpp

Well, there is a slight difference: in the first form CMT++ thinks to

be reading a file named "-" (CMT++'s escape notation for stdin)

while in the latter form CMT++ correctly knows that it reads the

file file1.cpp.

The above gives you no added functionality, but if you want to

measure a preprocessed source file, you can take use of this

feature. Here's an example (MSVC++):

C:\SOURCEDIR> cl /E file1.cpp | cmt -o prefile1.txt -

which is equivalent to the sequence of commands:

C:\SOURCEDIR> cl /E file1.cpp > tempfile.cpp

C:\SOURCEDIR> cmt -o prefile1.txt tempfile.cpp

C:\SOURCEDIR> del tempfile.cpp

5.6. Example

In the following an example of measuring the complexity of four

source files is presented. The files are stack.h, stack.cpp,

demofile.h and demofile.cpp.

stack.h:

26

// --
//
// Class : STACK from STACK.H
// Parents :
// Friends :
// Part of :
// Created : 12 Oct 1990 by A.C.Coder
// Abstract : This module implements a dynamic stack for integers.
// Other stacks can be easily constructed by changing
// the defintion of STACK_ITEM type. Note: STACK_ITEM
// should not be any array type.
// Revision : 1.0, 12 Oct 1990 12:00:00, by ACC
//
// Copyright (C) 1990 Sample Software Ltd.
// --
// Revision history
//
// 1.0: Initial revision
//
// --

#ifndef STACK_H
#define STACK_H

// ------------------------- PUBLIC TYPES -------------------------

//
// STACK_ITEM: The items stored in the stack are of this type
//

typedef int STACK_ITEM;

// ----------------------- CLASS DECLARATION ----------------------

class Stack
{
public:
 Stack();
 ~Stack();
 void clear();
 unsigned height();
 void push(
 STACK_ITEM item);
 STACK_ITEM pop();
 STACK_ITEM top();
protected:
 STACK_ITEM &element(unsigned index);
private:
 unsigned myheight; // current height of stack
 unsigned size; // current size (max. height)
 STACK_ITEM *value; // the data in stack
};

// ------------------ INLINE MEMBER DEFINTIONS -------------------

#endif

stack.cpp:

// --
//

27

// Class : STACK from STACK.CPP
// Parents :
// Friends :
// Part of :
// Created : 12 Oct 1990 by A.C.Coder
// Abstract : This module implements a stack.
// Revision : 1.0, 12 Oct 1990 12:00:02, by ACC
//
// Copyright (C) 1990 Sample Software Ltd.
// --
// Revision history
//
// 1.0: Initial revision
//
// --

// -------------------- APPLICATION INCLUDES ----------------------

#include "stack.h"

// ----------------------- PRIVATE CONSTANTS ----------------------

//
// - SIZE_STEP: defines the number of new stack elements allocated
// each time the stack becomes full
//

int const SIZE_STEP = 40;

// --
//
// Function : Stack::Stack
// Description : Initializes the private members, all to 0. Memory
// is not allocated before the first push.
// Updates : - height
// - size
// - value
//
// --

Stack::Stack():
 myheight(0),
 size(0),
 value(0)
{
 // Nothing
}

// --
//
// Function : Stack::~Stack
// Description :
// Updates : - value
//
// --

Stack::~Stack()
{
 delete value;
}

// --
//
// Function : Stack::clear
// Description :
// Updates : - height

28

//
// --

void Stack::clear()
{
 myheight = 0;
}

// --
//
// Function : Stack::empty
// Description :
// Updates :
//
// --

unsigned Stack::height()
{
 return myheight;
}

// --
//
// Function : Stack::push
// Description :
// Updates : - height
// - size
// - value
//
// --

void Stack::push(
 STACK_ITEM item)
{
 if (myheight >= size)
 {
 size += SIZE_STEP;
 STACK_ITEM *new_value = new STACK_ITEM[size];
 for (unsigned i = 0; i < myheight; i++)
 new_value[i] = value[i];
 delete value;
 value = new_value;
 }
 value[myheight++] = item;
}

// --
//
// Function : Stack::pop
// Description :
// Updates : - height
//
// --

STACK_ITEM Stack::pop()
{
 STACK_ITEM item;

 if (myheight > 0)
 item = value[--myheight];

 return item;
}

// ---

29

//
// Function : Stack::top
// Description :
// Updates :
//
// ---

STACK_ITEM Stack::top()
{
 STACK_ITEM item;

 if (myheight > 0)
 item = value[myheight - 1];

 return item;
}

STACK_ITEM &Stack::element(unsigned index) { return value[index]; }

demofile.h:

// This code just demonstrates what CMT++ calculates of various
// C/C++ language constructs. This file compiles ok, but as
// executable code this is nonsense.

extern int a;

class MyClass {
 MyClass() {
 a = 5;
 }
 ~MyClass() {
 a = 0;
 }
 int foo1(int i);
 int foo2(int i);
};

int SomeFunction();

demofile.cpp:

// This code just demonstrates what CMT++ calculates of various
// C/C++ language constructs. This file compiles ok, but as
// executable code this is nonsense.

#include "demofile.h"

int a;

int MyClass::foo1(int i) {
 if (i > 5 || i > 6 || i > 7 || i > 8 || i > 9) {
 a = a + i;
 }
 return a;
}

int MyClass::foo2(int i) {
 if (i > 10) {
 a--;
 } else {
 a = a - i;
 }
 return 0;

30

}

int SomeFunction() {
 if (a > 0) {
 switch (a) {
 case 0:
 case 1:
 case 2:
 a++;
 break;
 case 3:
 a--;
 break;
 default:
 a = 0;
 }
 }
 return a == 0 ? 100 : 200;
}

We now measure the complexity of these files:

cmt -o report.txt stack.h demofile.h stack.cpp demofile.cpp

* CMT++, Complexity Measurement Tool for C/C++/C#, Version 7.0 *

* *

* Copyright (c) 1993-2013 Testwell Oy *

* Copyright (c) 2013-2018 Verifysoft Technology GmbH *

Measuring file 1 2 3 4 Done

The resulting report file report.txt is of a short form and is listed

below:

7****

* CMT++, Complexity Measurement Tool for C/C++/C#, Version 6.0 *

* *

* COMPLEXITY MEASURES REPORT *

* *

* Copyright (c) 1993-2013 Testwell Oy *

* Copyright (c) 2013-2015 Verifysoft Technology GmbH *

This report was produced at Fri Aug 10 13:46:35 2018
Options: -o report.txt

File: stack.h

Line Measured object v(G) LOCphy LOCpro c% V B MI
===

 60 stack.h 2 60 22 343 0.09 118
===

File: demofile.h

Line Measured object v(G) LOCphy LOCpro c% V B MI
===
 8 MyClass::
 8 MyClass() 1 3 3- 20- 0.00 137

31

 11 ~MyClass() 1 3 2 20- 0.00 137

 18 demofile.h 1 18 12 - 156 0.04 142
===

File: stack.cpp

Line Measured object v(G) LOCphy LOCpro c% V B MI
===
 32 Stack::
 32 Stack() 1 18 6 56 0.01 150
 51 ~Stack() 1 12 4 27 0.01 160
 64 clear() 1 12 4 33 0.01 159
 77 height() 1 12 4 29 0.01 159
 90 push() 3 24 14 288 0.10 130
 115 pop() 2 18 7 94 0.03 141
 134 top() 2 17 7 100 0.03 143
 152 element() 1 1 1- 52 0.01 150

 152 stack.cpp 5 152 49 972 0.41 143
===

File: demofile.cpp

Line Measured object v(G) LOCphy LOCpro c% V B MI
===
 9 MyClass::
 9 foo1() 6 6 6 164 0.04 114
 16 foo2() 2 8 8 113 0.03 112
 25 SomeFunction() 5 17 17 - 209 0.07 96

 41 demofile.cpp 11 41 33 - 620 0.22 120
===

OVERALL SUMMARY:

 4 Files 13 Functions
Measure Alarmed % Limits Alarmed % Limits
========================= =================== ===================
Complexity (extended) v(G) 0 0 1-100 0 0 1-10
Program lines LOCpro 0 0 4-400 2 15 4-40
Comment % 2 50 30-75 1 7 30-75
Volume V 0 0 100-8000 2 15 20-1000
Estimated number of bugs B 0 0 0-2 0 0 n/a
Maintainability index MI 0 0 65- 0 0 65-
========================= =================== ===================
Total 2 8 5 7

Files: 4 LOCphy: 271 LOCbl: 45 LOCpro: 116 LOCcom: 113 ';': 51
v(G) : 16 MI without comments: 107 MI comment weight: 40 MI: 147

From the header file stack.h only the file summary level measures

are reported. But the other header file demofile.h contained two

functions with implementation (MyClass::MyClass(){…} and

MyClass::~MyClass(){…}) and they are reported in addition to the

file summary measures.

32

File stack.cpp is rather simple and CMT++ considers it quite well

built. Only one alarm was reported. Function element() was all

written on one line, while CMT++ would have liked to see at least

4 lines in a function. (For a class destructor a separate low limit is

used, if you are wondering why the there is no warning on

MyClass::~MyClass()).

Some functions and files were alarmed for their commenting %

ratio. However, functions that are very small (configurable in

cmt.ini file, here 10 lines) are excused from comment % alarms.

In file stack.cpp the member function bodies are preceded with a

comment block. It is configurable in the cmt.ini file if the lines of

such preceding comment block is included to the LOCphy lines of

the function.

In regard to McCabe's complexity the most complex function was

MyClass::foo1(). McCabe measure 1 is obtained when the "code

runs straight through". Each conditional branch adds 1 to McCabe.

In regard to Halstead's complexity the most complex function was

Stack::push(). This short report shows V, volume or a kind logical

size estimate, and B, estimated number of bugs. Halstead

measures are derived from the source code when it is stripped from

comments and line layout, and viewed only as a sequence of

operand and operator tokens.

In regard to maintainability (MI) the poorest function was

SomeFunction(). The MI measure is a balanced measure that is

derived with certain formulae (defined by Sofwtare Engineering

Institute) based on McCabe measure, Halstead measure, and lines

of code/commenting ratio measure. MI tries to capture into one

number the maintainabililty of the piece of code (single function,

single file, or the whole system (=all measured files)).

The long report (with operand and operator frequencies) could

have been produced as follows:

cmt -lf -o lfreport.xml demofile.cpp stack.h demofile.h stack.cpp

The long format output file is in XML, and looks as follows:

33

<?xml version="1.0" encoding="ISO-8859-1"?>
<cmt_long_report>
 <header_info>
 <cmt_version>6.0</cmt_version>
 <copyright>Copyright (c) 1993-2013 Testwell

Oy</copyright>
 <copyright>Copyright (c) 2013-2018 Verifysoft Technology

GmbH</copyright>
 <license_notes>
 </license_notes>
 <date>Mon Aug 10 14:03:26 2015</date>
 <cmt_options> -lf -o lfreport.xml</cmt_options>
 <run_directory>F:\cmtwork\v60\doc</run_directory>
 <mccabe_preference>extended</mccabe_preference>
 </header_info>
 <file name="stack.h" stamp="1188737631">
 <file_total>
 <vG_b>2</vG_b>
 <vG_e>2</vG_e>
 <vG_b_max>1</vG_b_max>
 <vG_b_avg>1</vG_b_avg>
 <vG_e_max>1</vG_e_max>
 <vG_e_avg>1</vG_e_avg>
 <params>0</params>
 <LOCphy>60</LOCphy>
 <LOCpro>22</LOCpro>
 <LOCbl>12</LOCbl>
 <LOCcom>29</LOCcom>
 <N>68</N>
 <N1>38</N1>
 <N2>30</N2>
 <n>33</n>
 <n1>15</n1>
 <n2>18</n2>
 <V>343.019</V>
 0.088
 <D>12.500</D>
 <E>4287.735</E>
 <L>0.080</L>
 <T>00:03:58</T>
 <MaxND>0</MaxND>
 <MIwoc>74</MIwoc>
 <MIcwc>44</MIcwc>
 <MI>118</MI>
 <operators>
 <token count="3">#</token>
 <token count="1">&</token>
 <token count="8">()</token>
 <token count="1">*</token>
 <token count="3">:</token>
 <token count="13">;</token>
 <token count="1">class</token>
 <token count="1">endif</token>
 <token count="1">ifndef</token>
 <token count="1">private</token>
 <token count="1">protected</token>
 <token count="1">public</token>
 <token count="1">typedef</token>
 <token count="1">{}</token>
 <token count="1">~</token>
 </operators>
 <operands>
 <token count="2">STACK_H</token>
 <token count="6">STACK_ITEM</token>
 <token count="3">Stack</token>
 <token count="1">clear</token>

34

 <token count="1">define</token>
 <token count="1">element</token>
 <token count="1">height</token>
 <token count="1">index</token>
 <token count="1">int</token>
 <token count="1">item</token>
 <token count="1">myheight</token>
 <token count="1">pop</token>
 <token count="1">push</token>
 <token count="1">size</token>
 <token count="1">top</token>
 <token count="4">unsigned</token>
 <token count="1">value</token>
 <token count="2">void</token>
 </operands>
 </file_total>
 </file>
 <file name="demofile.h" stamp="1188747583">

 ... for saving space contents here deleted

 </file>
 <file name="stack.cpp" stamp="1188737626">

 ... for saving space contents here deleted

 </file>
 <file name="demofile.cpp" stamp="1188747596">
 <function name="MyClass::foo1()">
 <start_line>9</start_line>
 <vG_b>2</vG_b>
 <vG_e>6</vG_e>
 <params>1</params>
 <LOCphy>6</LOCphy>
 <LOCpro>6</LOCpro>
 <LOCbl>0</LOCbl>
 <LOCcom>0</LOCcom>
 <N>38</N>
 <N1>19</N1>
 <N2>19</N2>
 <n>20</n>
 <n1>10</n1>
 <n2>10</n2>
 <V>164.233</V>
 0.045
 <D>9.500</D>
 <E>1560.216</E>
 <L>0.105</L>
 <T>00:01:26</T>
 <MaxND>2</MaxND>
 <MIwoc>114</MIwoc>
 <MIcwc>0</MIcwc>
 <MI>114</MI>
 <operators>
 <token count="1">()</token>
 <token count="1">+</token>
 <token count="1">::</token>
 <token count="2">;</token>
 <token count="1">=</token>
 <token count="5">></token>
 <token count="1">if()</token>
 <token count="1">return</token>
 <token count="2">{}</token>
 <token count="4">||</token>
 </operators>
 <operands>

35

 <token count="1">5</token>
 <token count="1">6</token>
 <token count="1">7</token>
 <token count="1">8</token>
 <token count="1">9</token>
 <token count="1">MyClass</token>
 <token count="3">a</token>
 <token count="1">foo1</token>
 <token count="7">i</token>
 <token count="2">int</token>
 </operands>
 </function>
 <function name="MyClass::foo2()">
 <start_line>16</start_line>
 <vG_b>2</vG_b>
 <vG_e>2</vG_e>
 <params>1</params>
 <LOCphy>8</LOCphy>
 <LOCpro>8</LOCpro>
 <LOCbl>0</LOCbl>
 <LOCcom>0</LOCcom>
 <N>27</N>
 <N1>15</N1>
 <N2>12</N2>
 <n>18</n>
 <n1>11</n1>
 <n2>7</n2>
 <V>112.588</V>
 0.035
 <D>9.429</D>
 <E>1061.544</E>
 <L>0.106</L>
 <T>00:00:58</T>
 <MaxND>2</MaxND>
 <MIwoc>112</MIwoc>
 <MIcwc>0</MIcwc>
 <MI>112</MI>
 <operators>
 <token count="1">()</token>
 <token count="1">-</token>
 <token count="1">--</token>
 <token count="1">::</token>
 <token count="3">;</token>
 <token count="1">=</token>
 <token count="1">></token>
 <token count="1">else</token>
 <token count="1">if()</token>
 <token count="1">return</token>
 <token count="3">{}</token>
 </operators>
 <operands>
 <token count="1">0</token>
 <token count="1">10</token>
 <token count="1">MyClass</token>
 <token count="3">a</token>
 <token count="1">foo2</token>
 <token count="3">i</token>
 <token count="2">int</token>
 </operands>
 </function>
 <function name="SomeFunction()">
 <start_line>25</start_line>
 <vG_b>5</vG_b>
 <vG_e>5</vG_e>
 <params>0</params>
 <LOCphy>17</LOCphy>

36

 <LOCpro>17</LOCpro>
 <LOCbl>0</LOCbl>
 <LOCcom alarmed="1">0</LOCcom>
 <N>45</N>
 <N1>28</N1>
 <N2>17</N2>
 <n>25</n>
 <n1>16</n1>
 <n2>9</n2>
 <V>208.974</V>
 0.072
 <D>15.111</D>
 <E>3157.822</E>
 <L>0.066</L>
 <T>00:02:55</T>
 <MaxND>3</MaxND>
 <MIwoc>96</MIwoc>
 <MIcwc>0</MIcwc>
 <MI>96</MI>
 <operators>
 <token count="1">()</token>
 <token count="1">++</token>
 <token count="1">--</token>
 <token count="2">:</token>
 <token count="6">;</token>
 <token count="1">=</token>
 <token count="1">==</token>
 <token count="1">></token>
 <token count="1">?</token>
 <token count="2">break</token>
 <token count="4">case ...:</token>
 <token count="1">default</token>
 <token count="1">if()</token>
 <token count="1">return</token>
 <token count="1">switch()</token>
 <token count="3">{}</token>
 </operators>
 <operands>
 <token count="4">0</token>
 <token count="1">1</token>
 <token count="1">100</token>
 <token count="1">2</token>
 <token count="1">200</token>
 <token count="1">3</token>
 <token count="1">SomeFunction</token>
 <token count="6">a</token>
 <token count="1">int</token>
 </operands>
 </function>
 <file_total>
 <vG_b>7</vG_b>
 <vG_e>11</vG_e>
 <vG_b_max>5</vG_b_max>
 <vG_b_avg>3</vG_b_avg>
 <vG_e_max>6</vG_e_max>
 <vG_e_avg>4</vG_e_avg>
 <params>2</params>
 <LOCphy>41</LOCphy>
 <LOCpro>33</LOCpro>
 <LOCbl>5</LOCbl>
 <LOCcom alarmed="1">3</LOCcom>
 <N>115</N>
 <N1>64</N1>
 <N2>51</N2>
 <n>42</n>
 <n1>22</n1>

37

 <n2>20</n2>
 <V>620.117</V>
 0.224
 <D>28.050</D>
 <E>17394.268</E>
 <L>0.036</L>
 <T>00:16:06</T>
 <MaxND>3</MaxND>
 <MIwoc>100</MIwoc>
 <MIcwc>20</MIcwc>
 <MI>120</MI>
 <operators>
 <token count="1">#</token>
 <token count="3">()</token>
 <token count="1">+</token>
 <token count="1">++</token>
 <token count="1">-</token>
 <token count="2">--</token>
 <token count="2">:</token>
 <token count="2">::</token>
 <token count="12">;</token>
 <token count="3">=</token>
 <token count="1">==</token>
 <token count="7">></token>
 <token count="1">?</token>
 <token count="2">break</token>
 <token count="4">case ...:</token>
 <token count="1">default</token>
 <token count="1">else</token>
 <token count="3">if()</token>
 <token count="3">return</token>
 <token count="1">switch()</token>
 <token count="8">{}</token>
 <token count="4">||</token>
 </operators>
 <operands>
 <token count="5">0</token>
 <token count="1">1</token>
 <token count="1">10</token>
 <token count="1">100</token>
 <token count="1">2</token>
 <token count="1">200</token>
 <token count="1">3</token>
 <token count="1">5</token>
 <token count="1">6</token>
 <token count="1">7</token>
 <token count="1">8</token>
 <token count="1">9</token>
 <token count="2">MyClass</token>
 <token count="1">SomeFunction</token>
 <token count="13">a</token>
 <token count="1">foo1</token>
 <token count="1">foo2</token>
 <token count="10">i</token>
 <token count="1">include</token>
 <token count="6">int</token>
 </operands>
 </file_total>
 </file>
 <system>
 <files>4</files>
 <functions>13</functions>
 <LOCphy>271</LOCphy>
 <LOCbl>45</LOCbl>
 <LOCpro>116</LOCpro>
 <LOCcom>113</LOCcom>

38

 <semicolons>51</semicolons>
 <vG_b>12</vG_b>
 <vG_e>16</vG_e>
 <params>4</params>
 <MIwoc>107</MIwoc>
 <MIcw>40</MIcw>
 <MI>147</MI>
 <alarms>
 <file_vG>
 <measured>4</measured>
 <alarmed>0</alarmed>
 <percent>0</percent>
 <lowlimit>1</lowlimit>
 <highlimit>100</highlimit>
 </file_vG>
 <file_LOCpro>
 <measured>4</measured>
 <alarmed>0</alarmed>
 <percent>0</percent>
 <lowlimit>4</lowlimit>
 <highlimit>400</highlimit>
 </file_LOCpro>
 <file_comment_percent>
 <measured>4</measured>
 <alarmed>0</alarmed>
 <percent>0</percent>
 <lowlimit>30</lowlimit>
 <highlimit>75</highlimit>
 </file_comment_percent>
 <file_V>
 <measured>4</measured>
 <alarmed>0</alarmed>
 <percent>0</percent>
 <lowlimit>100</lowlimit>
 <highlimit>8000</highlimit>
 </file_V>
 <file_B>
 <measured>4</measured>
 <alarmed>0</alarmed>
 <percent>0</percent>
 <lowlimit>0</lowlimit>
 <highlimit>2</highlimit>
 </file_B>
 <file_MI>
 <measured>4</measured>
 <alarmed>0</alarmed>
 <percent>0</percent>
 <lowlimit>65</lowlimit>
 </file_MI>
 <function_vG>
 <measured>13</measured>
 <alarmed>0</alarmed>
 <percent>0</percent>
 <lowlimit>1</lowlimit>
 <highlimit>10</highlimit>
 </function_vG>
 <function_LOCpro>
 <measured>13</measured>
 <alarmed>2</alarmed>
 <percent>15</percent>
 <lowlimit>4</lowlimit>
 <highlimit>40</highlimit>
 </function_LOCpro>
 <function_comment_percent>
 <measured>13</measured>
 <alarmed>2</alarmed>

39

 <percent>15</percent>
 <lowlimit>30</lowlimit>
 <highlimit>75</highlimit>
 </function_comment_percent>
 <function_V>
 <measured>13</measured>
 <alarmed>2</alarmed>
 <percent>15</percent>
 <lowlimit>20</lowlimit>
 <highlimit>1000</highlimit>
 </function_V>
 <function_MI>
 <measured>13</measured>
 <alarmed>0</alarmed>
 <percent>0</percent>
 <lowlimit>65</lowlimit>
 </function_MI>
 </alarms>
 <error_messages count="0">
 </error_messages>
 </system>
</cmt_long_report>

The long report can be rather long. It is just and just human

readable. Primarily this report is meant to be used by some XML

add-on utility, which reads the measurements and picks those

measures that are of interest and further processes them as the user

wishes.

If this report had been generated with option -l only (not -lf), the

sections <operators>…</operators><operands>…</operands>

would just be absent. And should there had been -s (summary)

option, the <function name "fname()">…</function> would just be

absent.

The json long report (with operand and operator frequencies) could

have been produced as follows:

cmt -jf -o lfreport.json demofile.cpp stack.h demofile.h stack.cpp

The json long format output file is in JSON, and looks as follows:

{
 "header_info": {
 "cmt_version": 7.0,
 "copyright": [
 "Copyright (c) 2001-2012 Testwell Oy",
 "Copyright (c) 2018 Verifysoft Technology GmbH"
],
 "license_notes": [
],
 "date": "Fri Aug 10 09:13:00 2019",
 "cmt_options": " -jf -o lfreport.json",
 "cwd": "/home/roland",

40

 "mccabe_preference": "extended"
 },
 "file": [
 {
 "name": "demofile.cpp" ,
 "stamp" : 1552895571,
 "function" : [
 {
 "name": "MyClass::foo1()" ,
 "start_line" : 9,
 "vG_b" : 2,
 "vG_b_alarmed" : true,
 "vG_e" : 6,
 "vG_e_alarmed" : true,
 "params" : 1,
 "LOCphy" : 6,
 "LOCpro" : 6,
 "LOCpro_alarmed" : true,
 "LOCbl" : 0,
 "LOCcom" : 0,
 "LOCcom_alarmed" : false,
 "N" : 38,
 "N1" : 19,
 "N2" : 19,
 "n" : 20,
 "n1" : 10,
 "n2" : 10,
 "V" :164.233,
 "V_alarmed" : true,
 "B" :0.045,
 "D" :9.500,
 "E" :1560.216,
 "L" :0.105,
 "T": "00:01:26" ,
 "MaxND" : 2,
 "MIwoc" : 114,
 "MIcwc" : 0,
 "MI" : 114,
 "MI_alarmed" : true,
 "operators" : {
 "()" : 1,
 "+" : 1,
 "::" : 1,
 ";" : 2,
 "=" : 1,
 ">" : 5,
 "if()" : 1,
 "return" : 1,
 "{}" : 2,
 "||" : 4

 },
 "operands" : {
 "5" : 1,
 "6" : 1,
 "7" : 1,
 "8" : 1,
 "9" : 1,
 "MyClass" : 1,
 "a" : 3,
 "foo1" : 1,
 "i" : 7,
 "int" : 2

 }
 }

41

 , {
 "name": "MyClass::foo2()" ,
 "start_line" : 16,
 "vG_b" : 2,
 "vG_b_alarmed" : true,
 "vG_e" : 2,
 "vG_e_alarmed" : true,
 "params" : 1,
 "LOCphy" : 8,
 "LOCpro" : 8,
 "LOCpro_alarmed" : true,
 "LOCbl" : 0,
 "LOCcom" : 0,
 "LOCcom_alarmed" : false,
 "N" : 27,
 "N1" : 15,
 "N2" : 12,
 "n" : 18,
 "n1" : 11,
 "n2" : 7,
 "V" :112.588,
 "V_alarmed" : true,
 "B" :0.035,
 "D" :9.429,
 "E" :1061.544,
 "L" :0.106,
 "T": "00:00:58" ,
 "MaxND" : 2,
 "MIwoc" : 112,
 "MIcwc" : 0,
 "MI" : 112,
 "MI_alarmed" : true,
 "operators" : {
 "()" : 1,
 "-" : 1,
 "--" : 1,
 "::" : 1,
 ";" : 3,
 "=" : 1,
 ">" : 1,
 "else" : 1,
 "if()" : 1,
 "return" : 1,
 "{}" : 3

 },
 "operands" : {
 "0" : 1,
 "10" : 1,
 "MyClass" : 1,
 "a" : 3,
 "foo2" : 1,
 "i" : 3,
 "int" : 2

 }
 }
 , {
 "name": "SomeFunction()" ,
 "start_line" : 25,
 "vG_b" : 5,
 "vG_b_alarmed" : true,
 "vG_e" : 5,
 "vG_e_alarmed" : true,
 "params" : 0,
 "LOCphy" : 17,

42

 "LOCpro" : 17,
 "LOCpro_alarmed" : true,
 "LOCbl" : 0,
 "LOCcom" : 0,
 "LOCcom_alarmed" : false,
 "N" : 45,
 "N1" : 28,
 "N2" : 17,
 "n" : 25,
 "n1" : 16,
 "n2" : 9,
 "V" :208.974,
 "V_alarmed" : true,
 "B" :0.072,
 "D" :15.111,
 "E" :3157.822,
 "L" :0.066,
 "T": "00:02:55" ,
 "MaxND" : 3,
 "MIwoc" : 96,
 "MIcwc" : 0,
 "MI" : 96,
 "MI_alarmed" : true,
 "operators" : {
 "()" : 1,
 "++" : 1,
 "--" : 1,
 ":" : 2,
 ";" : 6,
 "=" : 1,
 "==" : 1,
 ">" : 1,
 "?" : 1,
 "break" : 2,
 "case ...:" : 4,
 "default" : 1,
 "if()" : 1,
 "return" : 1,
 "switch()" : 1,
 "{}" : 3

 },
 "operands" : {
 "0" : 4,
 "1" : 1,
 "100" : 1,
 "2" : 1,
 "200" : 1,
 "3" : 1,
 "SomeFunction" : 1,
 "a" : 6,
 "int" : 1

 }
 }
],
 "file_total": {
 "vG_b" : 7,
 "vG_b_alarmed" : true,
 "vG_e" : 11,
 "vG_e_alarmed" : true,
 "vG_b_max" : 5,
 "vG_b_avg" : 3,
 "vG_e_max" : 6,
 "vG_e_avg" : 4,
 "params" : 2,

43

 "LOCphy" : 41,
 "LOCpro" : 33,
 "LOCpro_alarmed" : true,
 "LOCbl" : 5,
 "LOCcom" : 3,
 "LOCcom_alarmed" : true,
 "N" : 115,
 "N1" : 64,
 "N2" : 51,
 "n" : 42,
 "n1" : 22,
 "n2" : 20,
 "V" :620.117,
 "V_alarmed" : true,
 "B" :0.224,
 "D" :28.050,
 "E" :17394.268,
 "L" :0.036,
 "T": "00:16:06" ,
 "MaxND" : 3,
 "MIwoc" : 100,
 "MIcwc" : 20,
 "MI" : 120,
 "MI_alarmed" : true,
 "operators" : {
 "#" : 1,
 "()" : 3,
 "+" : 1,
 "++" : 1,
 "-" : 1,
 "--" : 2,
 ":" : 2,
 "::" : 2,
 ";" : 12,
 "=" : 3,
 "==" : 1,
 ">" : 7,
 "?" : 1,
 "break" : 2,
 "case ...:" : 4,
 "default" : 1,
 "else" : 1,
 "if()" : 3,
 "return" : 3,
 "switch()" : 1,
 "{}" : 8,
 "||" : 4

 },
 "operands" : {
 "0" : 5,
 "1" : 1,
 "10" : 1,
 "100" : 1,
 "2" : 1,
 "200" : 1,
 "3" : 1,
 "5" : 1,
 "6" : 1,
 "7" : 1,
 "8" : 1,
 "9" : 1,
 "MyClass" : 2,
 "SomeFunction" : 1,
 "a" : 13,
 "foo1" : 1,

44

 "foo2" : 1,
 "i" : 10,
 "include" : 1,
 "int" : 6

 }
 }
 }
 ,
 {
 "name": "stack.h" ,
 "stamp" : 1552895741,
 "function" : [
],
 "file_total": {
 "vG_b" : 2,
 "vG_b_alarmed" : true,
 "vG_e" : 2,
 "vG_e_alarmed" : true,
 "vG_b_max" : 1,
 "vG_b_avg" : 1,
 "vG_e_max" : 1,
 "vG_e_avg" : 1,
 "params" : 0,
 "LOCphy" : 60,
 "LOCpro" : 22,
 "LOCpro_alarmed" : true,
 "LOCbl" : 12,
 "LOCcom" : 29,
 "LOCcom_alarmed" : true,
 "N" : 68,
 "N1" : 38,
 "N2" : 30,
 "n" : 33,
 "n1" : 15,
 "n2" : 18,
 "V" :343.019,
 "V_alarmed" : true,
 "B" :0.088,
 "D" :12.500,
 "E" :4287.735,
 "L" :0.080,
 "T": "00:03:58" ,
 "MaxND" : 0,
 "MIwoc" : 74,
 "MIcwc" : 44,
 "MI" : 118,
 "MI_alarmed" : true,
 "operators" : {
 "#" : 3,
 "&" : 1,
 "()" : 8,
 "*" : 1,
 ":" : 3,
 ";" : 13,
 "class" : 1,
 "endif" : 1,
 "ifndef" : 1,
 "private" : 1,
 "protected" : 1,
 "public" : 1,
 "typedef" : 1,
 "{}" : 1,
 "~" : 1

 },

45

 "operands" : {
 "STACK_H" : 2,
 "STACK_ITEM" : 6,
 "Stack" : 3,
 "clear" : 1,
 "define" : 1,
 "element" : 1,
 "height" : 1,
 "index" : 1,
 "int" : 1,
 "item" : 1,
 "myheight" : 1,
 "pop" : 1,
 "push" : 1,
 "size" : 1,
 "top" : 1,
 "unsigned" : 4,
 "value" : 1,
 "void" : 2

 }
 }
 }
 ,
 {
 "name": "demofile.h" ,
 "stamp" : 1552895595,
 "function" : [
 {
 "name": "MyClass::MyClass()" ,
 "start_line" : 8,
 "vG_b" : 1,
 "vG_b_alarmed" : true,
 "vG_e" : 1,
 "vG_e_alarmed" : true,
 "params" : 0,
 "LOCphy" : 3,
 "LOCpro" : 3,
 "LOCpro_alarmed" : true,
 "LOCbl" : 0,
 "LOCcom" : 0,
 "LOCcom_alarmed" : false,
 "N" : 7,
 "N1" : 4,
 "N2" : 3,
 "n" : 7,
 "n1" : 4,
 "n2" : 3,
 "V" :19.651,
 "V_alarmed" : true,
 "B" :0.004,
 "D" :2.000,
 "E" :39.303,
 "L" :0.500,
 "T": "00:00:02" ,
 "MaxND" : 1,
 "MIwoc" : 137,
 "MIcwc" : 0,
 "MI" : 137,
 "MI_alarmed" : true,
 "operators" : {
 "()" : 1,
 ";" : 1,
 "=" : 1,
 "{}" : 1

46

 },
 "operands" : {
 "5" : 1,
 "MyClass" : 1,
 "a" : 1

 }
 }
 , {
 "name": "MyClass::~MyClass()" ,
 "start_line" : 11,
 "vG_b" : 1,
 "vG_b_alarmed" : true,
 "vG_e" : 1,
 "vG_e_alarmed" : true,
 "params" : 0,
 "LOCphy" : 3,
 "LOCpro" : 2,
 "LOCpro_alarmed" : true,
 "LOCbl" : 0,
 "LOCcom" : 0,
 "LOCcom_alarmed" : false,
 "N" : 7,
 "N1" : 4,
 "N2" : 3,
 "n" : 7,
 "n1" : 4,
 "n2" : 3,
 "V" :19.651,
 "V_alarmed" : true,
 "B" :0.004,
 "D" :2.000,
 "E" :39.303,
 "L" :0.500,
 "T": "00:00:02" ,
 "MaxND" : 1,
 "MIwoc" : 137,
 "MIcwc" : 0,
 "MI" : 137,
 "MI_alarmed" : true,
 "operators" : {
 "()" : 1,
 ";" : 1,
 "=" : 1,
 "{}" : 1

 },
 "operands" : {
 "0" : 1,
 "MyClass" : 1,
 "a" : 1

 }
 }
],
 "file_total": {
 "vG_b" : 1,
 "vG_b_alarmed" : true,
 "vG_e" : 1,
 "vG_e_alarmed" : true,
 "vG_b_max" : 1,
 "vG_b_avg" : 1,
 "vG_e_max" : 1,
 "vG_e_avg" : 1,
 "params" : 0,
 "LOCphy" : 18,

47

 "LOCpro" : 12,
 "LOCpro_alarmed" : true,
 "LOCbl" : 3,
 "LOCcom" : 3,
 "LOCcom_alarmed" : true,
 "N" : 39,
 "N1" : 20,
 "N2" : 19,
 "n" : 16,
 "n1" : 7,
 "n2" : 9,
 "V" :156.000,
 "V_alarmed" : true,
 "B" :0.037,
 "D" :7.389,
 "E" :1152.667,
 "L" :0.135,
 "T": "00:01:04" ,
 "MaxND" : 1,
 "MIwoc" : 113,
 "MIcwc" : 30,
 "MI" : 142,
 "MI_alarmed" : true,
 "operators" : {
 "()" : 5,
 ";" : 7,
 "=" : 2,
 "class" : 1,
 "extern" : 1,
 "{}" : 3,
 "~" : 1

 },
 "operands" : {
 "0" : 1,
 "5" : 1,
 "MyClass" : 3,
 "SomeFunction" : 1,
 "a" : 3,
 "foo1" : 1,
 "foo2" : 1,
 "i" : 2,
 "int" : 6

 }
 }
 }
 ,
 {
 "name": "stack.cpp" ,
 "stamp" : 1552895784,
For saving space, here deleted..
 }
 }
],
 "system" : {
 "files" : 4,
 "functions" : 13,
 "LOCphy" : 271,
 "LOCbl" : 45,
 "LOCpro" : 116,
 "LOCcom" : 113,
 "semicolons" : 51,
 "vG_b" : 12,
 "vG_e" : 16,
 "params" : 4,

48

 "MIwoc" : 107,
 "MIcw" : 40,
 "MI" : 147,
 "alarms" : {
 "file_vG" : {
 "measured" : 4,
 "alarmed" : 0,
 "percent" : 0,
 "lowlimit" : 1,
 "highlimit" : 100
 },
 "file_LOCpro": {
 "measured" : 4,
 "alarmed" : 0,
 "percent" : 0,
 "lowlimit" : 4,
 "highlimit" : 400
 },
 "file_comment_percent": {
 "measured" : 4,
 "alarmed" : 2,
 "percent" : 50,
 "lowlimit" : 30,
 "highlimit" : 75
 },
 "file_V": {
 "measured" : 4,
 "alarmed" : 0,
 "percent" : 0,
 "lowlimit" : 100,
 "highlimit" : 8000
 },
 "file_B": {
 "measured" : 4,
 "alarmed" : 0,
 "percent" : 0,
 "lowlimit" : 0,
 "highlimit" : 2
 },
 "file_MI": {
 "measured" : 4,
 "alarmed" : 0,
 "percent" : 0,
 "lowlimit" : 65
 },
 "function_vG": {
 "measured" : 13,
 "alarmed" : 0,
 "percent" : 0,
 "lowlimit" : 1,
 "highlimit" : 10
 },
 "function_LOCpro": {
 "measured" : 13,
 "alarmed" : 2,
 "percent" : 15,
 "lowlimit" : 4,
 "highlimit" : 40
 },
 "function_comment_percent": {
 "measured" : 13,
 "alarmed" : 1,
 "percent" : 7,
 "lowlimit" : 30,
 "highlimit" : 75
 },

49

 "function_V": {
 "measured" : 13,
 "alarmed" : 2,
 "percent" : 15,
 "lowlimit" : 20,
 "highlimit" : 1000
 },
 "function_MI": {
 "measured" : 13,
 "alarmed" : 0,
 "percent" : 0,
 "lowlimit" : 65
 }
 },
 "error_messages" : {
 "count" : 0,
 "msg" : [
]
 }
 }
}

The json report can be rather long. It is just and just human

readable. Primarily this report is meant to be used by some XML

add-on utility, which reads the measurements and picks those

measures that are of interest and further processes them as the user

wishes.

If this report had been generated with option -j only (not -jf), the

fields “operators”: { … } “operands”: { … } would just be absent.

The Excel output could have been produced as follows:

cmt -x -o xreport.txt stack.h demofile.h stack.cpp demofile.cpp

and the xreport.txt report file would be as follows:

File;Line;Measured_object;vG_b;vG_e;Params;MaxND;LOCphy;LOCbl;LOCpro

;LOCcom;V;B(x100);T;N1;N2;n1;n2;D;E;L(x1000);MIwoc;MIcw;MI;WarnMask
"demofile.h";8;"MyClass::MyClass()";1;1;0;1;3;0;3;0;20;0;00:00:02;4;

3;4;3;2;39;500;137;0;137;1010
"demofile.h";11;"MyClass::~MyClass()";1;1;0;1;3;0;2;0;20;0;00:00:02;

4;3;4;3;2;39;500;137;0;137;1000
"stack.cpp";32;"Stack::Stack()";1;1;0;1;18;1;6;11;56;1;00:00:12;9;8;

5;5;4;226;250;103;47;150;0
"stack.cpp";51;"Stack::~Stack()";1;1;0;1;12;1;4;7;27;1;00:00:06;6;3;

6;2;5;121;222;113;46;160;0
"stack.cpp";64;"Stack::clear()";1;1;0;1;12;1;4;7;33;1;00:00:04;5;5;5

;5;3;83;400;112;46;159;0
"stack.cpp";77;"Stack::height()";1;1;0;1;12;1;4;7;29;1;00:00:03;5;4;

5;4;3;71;400;113;46;159;0
"stack.cpp";90;"Stack::push()";3;3;1;2;24;1;14;9;288;10;00:04:28;31;

29;15;13;17;4826;60;89;41;130;0

50

"stack.cpp";115;"Stack::pop()";2;2;0;1;18;4;7;7;94;3;00:00:41;12;11;

10;7;8;739;127;100;41;141;0
"stack.cpp";134;"Stack::top()";2;2;0;1;17;3;7;7;100;3;00:00:41;12;12

;10;8;8;751;133;101;42;143;0
"stack.cpp";152;"Stack::element()";1;1;1;1;1;0;1;0;52;1;00:00:11;7;7

;7;6;4;212;245;150;0;150;10
"demofile.cpp";9;"MyClass::foo1()";2;6;1;2;6;0;6;0;164;4;00:01:26;19

;19;10;10;10;1560;105;114;0;114;0
"demofile.cpp";16;"MyClass::foo2()";2;2;1;2;8;0;8;0;113;3;00:00:58;1

5;12;11;7;9;1062;106;112;0;112;0
"demofile.cpp";25;"SomeFunction()";5;5;0;3;17;0;17;0;209;7;00:02:55;

28;17;16;9;15;3158;66;96;0;96;100

The first row specified the column headers and the next rows have

the column values. Because the rows are long, they show here as 2

lines. Further, the report is generated so that the excel field

separator is ';' while it is by default the \t (tab) character.

With command

cmt -x -s -o xsreport.txt stack.h demofile.h stack.cpp demofile.cpp

the following Excel data file xsreport.txt would result

File;Line;Measured_object;vG_b;vG_e;Params;MaxND;LOCphy;LOCbl;LOCpro

;LOCcom;V;B(x100);T;N1;N2;n1;n2;D;E;L(x1000);MIwoc;MIcw;MI;WarnMask
"stack.h";60;"stack.h";2;2;0;0;60;12;22;29;343;9;00:03:58;38;30;15;1

8;13;4288;80;74;44;118;0
"demofile.h";18;"demofile.h";1;1;0;1;18;3;12;3;156;4;00:01:04;20;19;

7;9;7;1153;135;113;30;142;100
"stack.cpp";152;"stack.cpp";5;5;2;2;152;25;49;78;972;41;00:40:35;91;

83;25;23;45;43836;22;98;45;143;0
"demofile.cpp";41;"demofile.cpp";7;11;2;3;41;5;33;3;620;22;00:16:06;

64;51;22;20;28;17394;36;100;20;120;100

Here you have only five rows, the column header row and the four

file summary rows.

Of the McCabe cyclomatic number two values, vG_b (basic) and

(extended) vG_e, are calculated and shown Further these values

can be modified or nor depending what has been the configuration

file cmt.ini MCCABE_PREFERENCE setting.

The B value is represented as multiplied with 100 and the L value

with 1000, none of the numerical values have a decimal separator.

When also the values are separated by a semicolon (vs, say, with a

comma), you can directly take this file as input to your Excel

regardless of what your Excel assumes as decimal separator

(comma or period). The used field separator is determined by

EXCEL_FIELD_SEPARATOR in cmt.ini file.

51

The last field on each row is “WarnMask”. It contains an encoding

on what measures were warned at the measured object. The

encoding is represented as an integral value as follows:

0 No warnings

Add 1 McCabe warned

Add 10 LOCpro warned

Add 100 Comment percent warned

Add 1000 Halstead V warned

Add 10000 Halstead B warned

Add 100000 Maintainability Index warned

For example, WarnMask value 10010 would mean that Halstead B

and LOCpro are warned (are outside of the acceptable ranges).

5.7. Using cmt2html Utility

The cmt2html utility is used to convert a short tabular CMT++

report (the default report form) into a hierarchical color-coded

html representation, which can be viewed with commonly used

html browsers. It is a command line utility, effectively a Perl

script, whichhas the following command line options:

cmt2html -h

cmt2html [-i inputfile] [-o outputdir] [-s sourcedir]…

 [-l splitsize] [-no-html-sources] [-no-java-script]

 [-nsb] [-p prefix]

where

-h

Displays a command line help of the options.

-i inputfile

(optional) Specifies the input file that is read by the tool. The

input file must be a CMT++ Complexity Measures Report,

so called short tabular form, such that has been produced

with cmt and when no –l, -lf, -x, -s options have been

applied. If no –i option is given, stdin is read.

52

-o outputdir

(optional) Specifies the directory, which will be created if

needed, and where the generated html files are written.When

no –o is given, directory CMTHTML in current directory

will be used.

-s sourcedir

 (optional) Specifies one directory (but there can be many -s

options) where cmt2html searches for the source files to be

able to make a html'ized copy of them (unless denied with -

no-html-sources option) or just to construct a html link to

them (when -no-html-sources option is given).

The rule, in order, for finding the source file is the following

(Assume input CMT++ report has "..\dir2\file.c" and in -s

option it is given "d:\tempdir"):

(1) If the source file is found with the name that it has on

input CMT++ report (..\dir2\file.c), these –s options have no

effect on the treatment of that source file.

(2) If not yet found, file d:\tempdir\..\dir2\file.c is looked.

Repeated on each –s option argument

(3) If not yet found, file d:\tempdir\file.c is looked. Repeaetd

on each –s option argument.

(4) If still not yet found, in the generated html report there is

link on this file to a page saying that the source file was not

found.

-l splitsize

 (optional) Specifies how big html junks are generated for the

detailed report html page. Whenever at the beginning of a

new source file the detailed html page contains already over

splitsize lines, a new html page is started and linked with

next and previous links to its neighbors. Splitting the

detailed html report may be needed (for the sake of faster

53

load times), if the html report contains much data (hundreds

of source files, thousands of functions, ...). The default

splitsize is 1000 lines.

-no-html-sources

 (optional) Determines that no html'ized copies of the source

files are generated in the output directory. Only links to them

are generated with such path and file names as they could be

resolved at the time and context of running cmt2html.

-no-javascript

 (optional) Do not generate Javascript calls to the resultant

HTML pages. Some browsers may have them disabled. The

function source code display gets also disabled.

-nsb

(optional) “No Start Browser”, advises cmt2html that

browser is not started on the generated html representation,

only the html files are generated. This option has effect only

on Windows environment, where only the default/automatic

starting of the browser is supported.

-p prefix

 (optional) Determines how the generated html files are

named in the output directory. They are named as

prefix.html, prefixA.html, prefixB.html, etc. In the absence

of this option the default prefix is index. (Now, as of

CMT++ v5.0, when there is the –o option, you might

consider this –p option as deprecated. However it is kept

here for compatibility reasons.)

The cmt2html utility does the following:

54

 Reads the CMT++ Execution Profile listing that is given

with the –i option. The input file must be of “short tabular

form.

 Creates, if needed, the output directory (default is

CMTHTML in current directory) and writes there (blindly

overwrites any possible previous files with same name) a

number of html files making up the html representation of

the input file. Unless denied with -no-html-sources option,

also the html'ized copies of the C/C++ source files are

constructed.

 The file where the browsing is started is prefix.html (by

default index.html) at that directory.

When the html representation is opened with a browser a summary

window is shown first. It contains the file-level summaries with a

histogram of the percent of alarms at the files. The data lines

represent the file summary level, as if cmt had been run with –s

option. Red color indicates that there have been alarms at the file.

The column header titles “Alarms-%”, “v(G)”, “LOCphy”,

“LOCpro”, “V”, “B” and “MI”(or “MIwoc”) are links to a sorted

view on that specific measure.

The file name serves as a link to the detailed window. Clicking on

it opens a new window and positions it to the detailed CMT++

listing of the file. The detailed window is effectively as the input

file, i.e. the CMT++ Complexity Measures Report, but made to a

color-coded html form. If –l splitsize option was used, the detailed

window may be in a number of smaller html junks, which load

faster and which are linked together with next and previous links.

In the detailed window the source file name is a link. By default it

points to the html'ized source file copy in the output directory, and

shows the whole source file. If -no-html-sources option was used,

it is a link to the actual source file, and it is up to the browser that

you use how a C/C++ source file gets shown. If the source file was

not found, the source file name is a link to a page, which tells that

source file was not found at cmt2html time.

55

In the detailed window the function names are by default (when

option -no-javascript was not given) links, too. Clicking on the

function name brings to the screen the lines from the source file

that make up the corresponding function. The lines vanish from

the screen by clicking the name again.

This showing the source code of the individual functions is

implemented by Javascripts in the generated html. If the html has

been generated in the default way, but your browser does not allow

Javascripts, you can experience various warning messages from

the browser, and these links do not function at all or they do not

work as intended (depending on the browser). When -no-

javascript option was used, the function names are not links at all,

the generated html does not contain Javascipts, and you do not get

any complaints from your browser, if it has Javascripts disabled.

The html representation gives you a fast way to browse the

CMT++ Complexity Measures Report at summary level, at

detailed level and all the way at the whole source file/individual

function level.

The cmt2html utility is effectively a Perl script. On Unixes it is

assumed the Perl is available there already. On Windows platform

the utility uses a Perl interpreter that comes along with the CMT++

delivery package (will reside at %CMTHOME%\perl).

An example:

C:\SOURCEDIR> cmt –o report.txt somefiles*.h somefiles*.cpp

C:\SOURCEDIR> cmt2html –i report.txt -nsb

C:\SOURCEDIR> start CMTHTML\index.html

IIAA

57

6. Interpreting Complexity Measures

This chapter discusses how the measurement results of CMT++

can be applied. It is not possible to give absolute limits to

acceptable values. The limits given and explained below are

common suggestions. These suggestions are based on

measurements made on code maintained with good success. You

can configure CMT++ for project specific needs by changing the

limit definitions in the configuration file.

6.1. Lines-of-Code Metrics

Lines-of-code metrics are the most traditional measures used to

quantify software complexity. They are simple, easy to count, and

very easy to understand. They do not, however, take into account

the intelligence content and the layout of the code. CMT++

calculates the following lines-of-code metrics:

 LOCphy: number of physical lines

 LOCbl: number of blank lines (a blank line inside a comment

block is considered to be a comment line)

 LOCpro: number of program lines (declarations, definitions,

directives, and code)

 LOCcom: number of comment lines

A line containing both program code and a comment is counted to

both LOCpro and to LOCcom.

The following recommendations are given for the lines-of-code

measures. See the configuration file (cmt.ini) on what of these

recommendations can be fine-tuned. CMT++ will mark an alarm in

the case that the measured value is outside the recommended

bounds.

58

Function length should be 4 to 40 program lines. A function

definition contains at least a prototype, one line of code, and a pair

of braces, which makes 4 lines. A function longer than 40 program

lines probably implements many functions. Functions containing

one selection statement with many branches are an exception to

this rule. Decomposing them into smaller functions often decreases

readability.

File length should be 4 to 400 program lines. The smallest entity

that may reasonably occupy a whole source file is a function, and

the minimum length of a function is 4 lines. Files longer than 400

program lines (10..40 functions) are usually too long to be

understood as a whole.

At least 30 percent and at most 75 percent of a file should be

comments. If less than one third of a file is comments the file is

either very trivial or poorly explained. If more than 75% of a file

are comments, the file is not a program but a document. In a well-

documented header file percentage of comments may sometimes

exceed 75%.

6.2. Cyclomatic number.

The cyclomatic number v(G) describes the complexity of the

control flow of the program. For a single function, v(G) is one less

than the number of conditional branching points in the function.

The greater the cyclomatic number is the more execution paths

there are through the function, and the harder it is to understand.

Note, that the cyclomatic number is insensitive to the complexity

of data structures, data flows, and module interfaces.

CMT++ supports a couple of flavors of cyclomatic number. The

selection is done by configuration file cmt.ini setting

MCCABE_PREFERENCE. . The options are:

basic:

Operators &&, || are not calculated to v(G).

extended:

59

Operators &&, || are calculated to v(G).

basic_modified:

Like basic, but ‘case n:’ labels of a ‘switch(…){…}’

statement are not calculated to v(G), but the ‘switch(…)’

itself is calculated as +1 to v(G).

extended_modified:

Like extended, but ‘case n;’ labes of a switch(…){…}

statement are calculated to v(G), but the ‘switch(…)’ itself is

calculated as +1 to v(G).

In our industry there are advocates on each of these ways to

calculate v(G). The defaut setting in configuration file is extended.

It also represents the most puritanistic view to the matter: number

of conditional branches in the code, and normally gives highest

v(G) values.

The cyclomatic number of a function should be at most 10. If a

function has a cyclomatic number of 10, there are at least 10 (but

probably more) execution paths through it. More than 10 paths are

hard to identify and test. Functions containing one selection

statement with many branches make up an exception.

A reasonable upper limit Cyclomatic number of a file is 100.

The function (including class/struct declaration) and file level

Cyclomatic number recommended low and high levels are defined

in configuration file (cmt.ini).

If you are measuring non-preprocessed source files, as presumably

is the normal case, CMT++ considers the conditional compilation

directives (like #ifdef, and, if extended/extended_modified, the &&

and || operators in them) to increase the v(G) as well.

Technically CMT++ calculates both basic (or basic_modified) and

extended (or extended_modified) cyclomatic numbers. They are

reported in Excel and XML form reports with names vG_b and

vG_e.

60

6.3. Maximun nesting depth

Somewhat related to v(G) measure is the MaxND measure. It is the

maximum nesting depth of {} braces in a function body. 5 is a

reasonable upper limit for MaxND. This is reported in Excel and

XML form reports.

6.4. Number of function parameters

Number of function parameters is calculated and reported in Excel

and XML form reports.

6.5. Volume (V)

Halstead's volume V describes the size of the implementation of an

algorithm. The computation of V is based on the number of

operators and operands (distinct and total) in the algorithm.

Therefore V is less sensitive to code layout than the lines-of-code

measures.

The volume of a function should be at least 20 and at most 1000.

The volume of a parameterless one-line function that is not empty,

is about 20. A volume greater than 1000 tells that the function

probably does too many things.

The volume of a file should be at least 100 and at most 8000.

These limits are based on volumes measured for files whose

LOCpro and v(G) are near their recommended limits. The limits of

volume can be used for double-checking.

6.6. Estimate for Delivered Bugs (B)

Halstead's delivered bugs B is an estimate for the number of errors

in the implementation.

Delivered bugs in a file should be less than 2. Experiences have

shown that, when programming with C or C++, a source file

almost always contains more errors than B suggests. The number

of defects tends to grow more rapidly than B.

61

In tool version v4.1 it was introduced configuration setting

B_CORRECTION_FACTOR. . It is a positive decimal number

and has default value 1.0. The initial B value (as calculated by the

original Halstead formulae) is multiplied with

B_CORRECTION_FACTOR before reporting and comparing to

alarm limits. With this setting you can fight against the hypothesis

that the original Halstead B measure estimates the number of bugs

to too low. For example, B_CORRECTION_FACTOR=1.95 might

be a reasonable value, if you decide to take this policy.

6.7. Maintainability Index (MI/MIwoc)

Maintainability Index (MI) was introduced to software engineering

in 1992 at the International Conference on Software Maintenance,

in a presentation given by Paul Oman and Jack Hagemeister.

Currently many measurement tools provide this measure.

Maintainability Index is calculated with certain formulae (see

"Appendix B. How the Measures Are Calculated") from lines-of-

code measures, McCabe extended cyclomatic number and Halstead

measures. MI is a composite measure, which strives to express the

relative maintainability of a complete software system in a single

number, which is straightforward to calculate and which would

have good predictive value.

There are two variants of Maintainability Index: one that is with

comments (MI) and one that is without comments (MIwoc).

CMT++ calculates them both. Which one is shown in some of the

basic CMT++ text form report is selected by configuration file

setting MI_PREFERENCE. .

Much of the whole idea of the MI is to derive a single number, the

Maintainability Index, of the whole software system. CMT++

calculates such a number over all the code that is inputted to it in

one cmt run. In CMT++ that number is called system-level MI.

CMT++ also calculates file-level MI and function-level MI.

In the general MI modeling the 'system' is considered to be a

collection of 'modules'. In CMT++ the 'module' is taken to be a

function definition. So, only those executable code snippets are

62

noticed when calcultating the system-level MI number, which is

the main interest in the MI modeling. This means that the code that

is in header files and the code that is in files between the functions

is ignored. This is explained so that the "ignored code" anyway

gets referred to in the function bodies, which are the actual

execution entities of the system. The "ignored code" gets noticed

indirectly in that way.

See also chapter "Appendix B. How the Measures Are Calculated"

for more discussion about the MI.

Maintainability Index (MI, with comments) value 85 and over

suggests good maintainability. Values 65 – 85 suggest moderate

maintainability. Values below 65 suggest that the system is

difficult to maintain. With really bad pieces of code (big,

uncommented, unstructured) the MI value can be even negative.

Whether you follow MI or MIwoc depends on how much you trust

on the validity of the commenting in the code. If the comments are

very out-of-date or if they are just some standard header blocks

with no real value to the maintainer, you might want to follow the

MIwoc measure instead of MI. And, of course, with this MI

measure and with all the other CMT++ measures, you should use

your common sense and make some experimental measurements

with some familiar software for finding the best-suited alarm

limits.

6.8. Complexity, Quality Assurance, and Testing

The more complex a module is, the more likely it is to contain

errors, and the more difficult it is to test. The more complex it is,

the harder it is to maintain. The more it contains errors, the more it

needs to be maintained. The problem feeds itself! Some algorithms

are complex, regardless of the way they are implemented, but in

most cases complex implementation is due to bad design.

Source code quality assurance usually utilizes teamwork methods

like code reading, structured walkthroughs, and inspections. These

methods are invaluable; a tool can never find all those kinds of

errors that a human inspection can. In addition to that, the team

63

inspections also help the members of the team to learn from each

other. However, there is usually too little time to inspect all the

code carefully. In such a case, it is important to select the most

important and most error-prone modules to the inspection.

Obviously, the modules that have high complexities need to be

inspected most carefully. How high "high" is depends, of course,

on your development process and quality criteria. The default

alarm limits of CMT++ are a good starting point. If you have

collected information about error densities of your code, you can

measure complexities of those codes and draw your own

conclusions about suitable alarm limits.

When dynamic testing is concerned, the most important

complexity measures are the cyclomatic number (v(G)) and the

number of delivered bugs (B). Because the cyclomatic number

describes the control flow complexity, it is obvious that modules

and functions having high cyclomatic number need more test cases

than modules having a lower cyclomatic number. As a rule of

thumb, each function should have at least as many test cases as

indicated by its cyclomatic number. The number of delivered bugs

approximates the number of errors in a module. As a goal at least

that many errors should be found from the module in its testing.

When assessing big amounts of foreign code, the Maintainability

Index is perhaps the most simple and fast to use indicator of the

code “level” in maintainability perspective.

IIAA

65

Appendix A. The Source Code Language

This appendix discusses how CMT++ analyzes the source

language.

CMT++ operates on C, C++ and C#. CMT++ consideres C to be a

subset of C++. Using C++ keywords as symbols in C programs

may cause a small error to the calculations. CMT++ also

recognizes the extensions, such as the keywords _near, _far and

_huge, of some commonly used C/C++ compilers in PC

environment (Microsoft, Borland). It is often also possible to

measure other beyond-ANSI dialect C/C++ programs with

CMT++, but then CMT++ may not be able to recognize all

measured items correctly.

C# code largely resembles C++ code, but it has some language

constructs, e.g. get{…} and set{…} property declarations, that C++

does not have. When CMT++ knows that the code is C# (ref. “4.3.

C# Code Handling Parameters”) the C#-specific language constructs are

identified and reported properly.

CMT++ does not actually check the input file syntax for being

correct C/C++/C#. CMT++ assumes that the input file compiles

correctly with your compiler. However, it is possible to measure

also erroneous or incomplete code, provided that the block

structure is correct.

When C/C++ code it is assumed to be fed to CMT++ in non-C-

preprocessd form. Thus CMT++ derives the measures of the

program file level that the programmer sees, edits and maintains.

CMT++ accepts the C-preprocessor directives, but it does not

process the source code according to the directives. It is also

possible to C-preprocess the source files before passing them to

CMT++. This will normally result in higher complexity values,

because macros are expanded and include directives are replaced

with the contents of the include files. In some cases analyzing

66

preprocessed code can result in lower complexity, because

conditional compilation has removed some code sections.

The C and C++ C-preprocessor operates on character level. It does

not recognize the block structure of the source language. Therefore

it is possible to write macros, which expand to only a part of a

block or a token. Programs using the C-preprocessor in such an

'unstructured' way must in general be C-preprocessed before

passing to CMT++.

CMT++ recognizes and processes /* ... */ block comments and

// ... line comments.

If you still happen to have old Kernighan-Ritchie 1 type of C code,

i.e. something like

int foo()
 int par1;
 int par2;
{
 return par1 + par2;
}

Note that these kinds of functions are not recognized nor reported

separately by CMT++. Here the foo() measures are counted only to

file level figures.

IIAA

67

Appendix B. How the Measures Are Calculated

The complexity measures are calculated for the following parts of

the source program:

 For each function definition (function body)

 Stand-alone function

 Member (inline) function defined inside a class or

struct declaration

 Member function defined separately outside the class

or struct declaration

 For each source file

 For all source files together ("system level") lines of code

measures, number of semicolons, McCabe’s v(G) and

Maintainability Index measures.

B.1. Lines of code Metrics

The lines of code measures are calculated according to the

following rules:

 Blank lines (LOCbl) are the lines containing only white-

space characters.

 Comment lines (LOCcom) are the lines containing C or C++

comments. A blank line inside a /* ... */ block comment is

counted to comment lines.

 Program lines (LOCpro) are the lines that contain program

code. Preprocessor directives and macro definitions are

considered also to be program lines. A line is counted to

LOCpro and to LOCcom, if it has both program code and

comment. Lines containing preprocessing directives are

calculated to LOCpro.

 Physical lines (LOCphy) are the lines that there are in a text

file sense in the measured fragment of code.

68

When calculating the lines of code metrics for a function, the

configuration parameter NOTICE_LEADING_COMMENTS

determines whether the immediately preceding consecutive

comment block is associated to function lines or not. For example,

assume we have the following code fragment:

...

/* Local functions: */

/* Function foo does something

 simple

*/

int foo(int arg) {

 return arg++; /* returning one bigger */

}

...

When NOTICE_LEADING_COMMENTS=1, for foo() it is

calculated: LOCphy=7, LOCpro=6, LOCcom=4, LOCbl=1. But

with NOTICE_LEADING_COMMENTS=0, for foo() it is

calculated: LOCphy=3, LOCpro=3, LOCcom=1, LOCbl=0, and

the preceding comment block is calculated only to the file-level

counts.

B.2. Halstead Metrics

Halstead's metrics is based on interpreting the source code as a

sequence of tokens and classifying each token to be an operator or

an operand. Then it is counted

 number of unique operators (n1)

 number of unique operands (n2)

 total number of operators (N1)

 and total number of operands (N2)

in the piece of source code under measurement (function or file).

Other Halstead measures are derived from these with certain fixed

formulas as described later.

Halstead measures are independent on comments and what is the

code “layout” in the source file.

69

No general, language independent rule exists for classifying tokens

to operators and operands. Before describing how CMT++ makes

the operator/operand distinction, an auxiliary classification of

tokens used by CMT++ is described:

IDENTIFIER All identifiers that are not reserved words.

SCSPEC (storage class specifiers) Reserved words

that specify storage class: auto, extern, inline,

register, static, typedef, virtual, mutable.

TYPESPEC (type specifiers) Reserved words that specify

type: bool, char, double, float, int, long, short,

signed, unsigned, void, wchar_t. This class also

includes some compiler specific nonstandard

keywords.

TYPE_QUAL (type qualifiers) Reserved words that qualify

type: const, constexpr, friend, volatile.

RESERVED Other reserved words: asm, break, case, class,

continue, default, delete, do, else, enum, for,

foreach, goto, if, new, operator, private,

protected, public, return, sizeof, struct, switch,

this, union, while, namespace, using, try, catch,

throw, const_cast, static_cast, dynamic_cast,

reinterpret_cast, typeid, template, explicit, true,

false, typename, abstract, as, base, checked,

decimal, event, finally, fixed, internal, is, lock,

null, object, out, override, params, readonly, ref,

sbyte, realed, stackalloc, unchecked, unsafe. This

class also includes some compiler specific

nonstandard keywords.

 Same set of identifiers is recognized to be

reserved words regardless if the code to be

measured is C, C++ or C#. But in practical code

e.g. usage of a C++ keyword as variable name in

C code is quite rare, and so the bias to

operator/operand classification (discussed below)

is considered to be marginal.

70

CONSTANT Character, numeric or string constants.

OPERATOR One of the following: ! != % %= & && || &=

() * *= + ++ += , - -- -= -> / /= : ::

< << <<= <= = == > >= >> >>= ? ?? []

^ ^= { } | |= ~ ; #

COMMENTS The comments delimited by /* and */ or // and

newline do not belong to the set of C++ tokens

but they are counted by CMT++.

The classification rules of CMT++ are determined so that frequent

language constructs give intuitively sensible operator and operand

counts. For example the statement f(x, y) is counted as follows: f, x

and y are operands and the parentheses and comma are operators.

You can see how CMT++ does the source code token classification

into operands and operators by taking the report with -lf option

Tokens of the following categories are all counted as operands by

CMT++: IDENTIFIER, TYPENAME, TYPESPEC, CONSTANT.

Tokens of the following categories are all counted as operators by

CMT++: SCSPEC, TYPE_QUAL, OPERATOR, RESERVED,

preprocessor directives. However, the tokens asm and this are

counted as operands.

The following control structures are treated in a special way:

case ...: The colon is considered to be a part of the case

construct. The case and the colon are counted

together as one operator.

for (...) (Also foreach(…), possible in C# code) The

parentheses are considered to be a part of the for

construct. The for and the parentheses are

counted together as one operator.

if (...) The parentheses are considered to be a part of the

if construct. The if and the parentheses are

counted together as one operator.

71

switch (...) The parentheses are considered to be a part of the

switch construct. The switch and the parentheses

are counted together as one operator.

while (...) The parentheses are considered to be a part of the

while construct. The while and the parentheses

are counted together as one operator.

catch (...) The parentheses are considered to be a part of the

catch construct. The catch and the parentheses

are counted together as one operator.

The number of unique operators and operands (n1 and n2) as well

as the total number of operators and operands (N1 and N2) are

calculated by collecting the frequencies of each operator and

operand token of the source program. All other Halstead's

measures are derived from these four quantities using the

following set of formulas.

The program length (N) is the sum of the total number of

operators (N1) and operands (N2) in the program:

 N = N1 + N2

The vocabulary size (n) is the sum of the number of unique

operators (n1) and operands (n2):

 n = n1 + n2

The program volume (V) is the information contents of the

program, measured in mathematical bits. It is calculated as the

program length times the 2-base logarithm of the vocabulary size:

 V = N * log2(n)

The difficulty level or error proneness (D) of the program is

proportional to the number of unique operators in the program. D

is also proportional to the ratio between the total number of

operands and the number of unique operands (i.e. if the same

operands are used many times in the program, it is more prone to

errors).

 D = (n1/2)*(N2/n2)

72

The program level (L) is the inverse of the error proneness of the

program. I.e. a low level program is more prone to errors than a

high level program.

 L = 1/D

The effort to implement (E) or understand a program is

proportional to the volume and to the difficulty level of the

program.

 E = V * D

The time to implement or understand a program (T) is

proportional to the effort. Empirical experiments can be used for

calibrating this quantity. Halstead has found that dividing the

effort by 18 gives an approximation for the time in seconds.

 T = E/18

The number of delivered bugs (B) correlates with the overall

complexity of the software. Halstead gives the following formula

for B (below "**" stands for "to the exponent"):

 B = (E**(2/3))/3000

Before reporting the B value is multiplied with

B_CORRECTION_FACTOR.)

Both at function and at file level the Halstead measures are

calculated in the above described way.

Halsetad measures are calculated and reported on functions and

files, no more at all-files-together level.

B.3. McCabe Metrics

McCabe Cyclomatic number v(G) is calculated on (standalone and

member) function definitions (“bodies”), on source files and on

all-files-together level.

McCabe's Cyclomatic number v(G) shows the complexity of the

flow of control through a piece of code. v(G) is the number of

73

conditional branches in the flowchart. v(G) = 1 for a program

consisting of only sequential statements, no conditional branching

in it.

Each if-statement introduces a new branch to the program and

therefore increases v(G) by one. Iteration constructs such as for-

and while-loops also introduce branches. Each case ...: part in the

switch-statement increase the v(G) by one. The default: case

branch does not increase v(G), because it does not increase the

number of branches in the control flow. If there are two or more

case ...: parts that have no code in between, the McCabe measure is

increased only with one for all those case ...: parts. Each catch (...)

part in a try-block increases v(G) by one. Construction expr1 ?

expr2 : expr3 increases v(G) by one.

It should be noted that v(G) is insensitive to unconditional

branches like goto-, return- and break-statements although they

surely increase complexity.

In CMT++ the branches generated by conditional compilation

directives are also counted to v(G). Even if conditional

compilation directives do not add branches to the control flow of

the executable program, they increase the complexity of the

program file that the user sees and edits.

In CMT++ v5.0 there came possibility to calculate McCabe

cyclomatic number in one of the following “flavors”: basic,

extended, basic_modified, extended_modified. What calculation

rule is used is determined by MCCABE_PREFERENCE

configuration setting. Default flavor is extended, which is the one

how CMT++ calculated v(G) also before v5.0.

In summary, the following language constructs increase (or can

increase) the cyclomatic number by one: if (...), for (...),

foreach(…), while (...), switch(…), case ...:, catch (...), &&, ||, ?,

??, #if, #ifdef, #ifndef, #elif.

Depending in what “flavor” the v(G) is calculated, there are some

differences. As an example consider the following function:

int foo(int a, int b, int c) {

 if (a == 5 && b == 6) {

 some_statements1;

74

 return 7;

 }

 switch (c) {

 case 1:

 some_statements2;

 break;

 case 3:

 case 4:

 case 6:

 return c + 1;

 case 8:

 some_statements3;

 default:

 some_statements4;

 }

 return 8;

}

When MCCABE_PREFERENCE=basic: && and || do not give

additional v(G) points. In the above function v(G) is 5. They come

as follows: 1 (start initially) + 1 (of if) + 1 (of case 1:) + 1 (of the

consecutive cases case 3:, case 4:, case 6:) + 1 (of case 8:).

When MCCABE_PREFERENCE=extended: The default or

traditional usage, each && and || give +1 to v(G). In the above

function v(G) is 6. It is calculated in the same way as in basic case,

but the && operator gives one +1.

 When MCCABE_PREFERENCE=basic_modified: Like basic,

but case n: labels do not increase v(G), instead switch() increases

it. In the above function v(G) is 3.They come as follows: 1 (start

initially) + 1 (of if) + 1 (of switch(…)).

When MCCABE_PREFERENCE=extended_modified: Like

extended but case n: labels do not increase v(G), instead switch()

increases it. In the above function v(G) is 4. It is calculated in the

same way as in basic_modified, but the && operator gives one +1.

On functions the McCabe Cyclomatic number is calculated as

described above.

On file level the McCabe Cyclomatic number is calculated

according to following rules:

 Start calculations from 1.

 If the file contains function definitions, whose McCabe

complexity is over one, add of each of them the amount how

75

much they are over one. For example, if some function has

complexity 5, the file level complexity measure is increased

by 4. If all the functions in a file have v(G) 1, also the whole

file has v(G) 1 (unless some code between the functions

gives some v(G) points to file level).

 If there is some code between function definitions or class/struct

definitions (there might be conditional compilation directives

like #ifdef), add that complexity to the file level measure.

On all files together level the McCabe Cyclomatic number is

calculated according to the following rules:

 Start calculation from 1

If there are participating files, whose McCabe complexity is over

one, add of each of them the amount how much they are over one.

For example, if some file has complexity 20, the all files together

complexity measure is increased with 19.

B.4. Maximum nesting depth

Maximum nesting depth MaxND is calculated on functions. It is

reported also on file level, where it means the maximum MaxND

value of the file's functions.

MaxND is a measure on how deep is the maximum {} nesting in

the function. For example, in the following code snippet

void foo1() {

.../* some code having no {}s */

}

void foo() {

 if(cond1) {

 if(cond2) {

 /* some code having no {}s */

 }

 }

 if(cond3) {

 /* some other code having no {}s */

 }

}

Here the MaxND is 1 for foo1 and 3 for foo2. In the counting only

the explicit {}s are noticed that are in the function body .

76

The MaxND is somewhat similar to v(G), but gives another and

supplementary view to the algorithmic complexity of the code.

B.5. Maintainability Index

Maintainability Index is calculated on each function, on each file

and on all files together level. Actually there are three measures:

 MIwoc: Maintainability Index without comments

 MIcw: Maintainability Index comment weight

 MI: Maintainability Index = MIwoc + MIcw.

The general formulae for MI is the following:

MIwoc = 171 – 5.2 * ln(aveV) – 0.23 * aveG – 16.2 *

ln(aveLOC)

MIcw = 50 * sin(sqrt(2.4 * perCM))

MI = MIwoc + MIcw.

Where

aveV = average Halstead Volume (CMT++’s V) per module

aveG = average extended cyclomatic complexity (CMT++’s

v(G)) per module. (The v(G) value may be modified or not

depending what there has been in

MCCABE_PREFERENCE setting in the configuration file)

aveLOC = average count of lines (CMT++’s LOCphy) per

module

“module” is (in CMT++ case) a C-like function definition or

a C++-like member function definition.

As an example, consider the following simple 15-line file1.cpp:

// Some file level comments

#include “file1.h”

int gv = 0; //some file level code

77

// Function header comment

int foo() {

 if (gv < 0) gv++; // line comment

 return gv;

}

void Aclass::bar() {

 gv = something;

}

At function level there is no “average” calculation. The divider is 1

straight away. For the above two functions (in MI modeling,

modules) CMT++ calculates the following measures:

foo(): V=48, v(G)=2, LOCphy=5, LOCcom=2, MIwoc=124,

MIcw=42, MI=166.

Aclass::bar(): V=33, v(G)=1, LOCphy=3, LOCcom=0,

MIwoc=135, MIcw=0, MI=135.

At file level, however, CMT++ makes the calculation a bit un-

orthogonally. The file1.cpp contains 2 modules (in the way as

modules are understood in MI modeling), functions foo() and

Aclass::bar(). However, at single file-level CMT++ does not

calculate the MI measures via the averages of its participating

modules but directly from file-level V, v(G), and LOC measures

after having divided these file-level measures first with the number

of modules. If there are no modules in the file, the divider is 1.

In this way the file-level code, which lexically is not included in

any module, has its impact at the file-level MI measures. . Here,

for the file1.cpp the file-level measures are: V=132, v(G)=2,

LOCphy=15, LOCcom=4, MIwoc=116, MIcw=36, MI=152.

The all files together level is considered to be the whole Software

or just system-level. For it CMT++ calculates the MI measures via

the participating module averages. In that calculation the code that

is lexically outside of modules has no effect to the system-level MI

measure. Such code has indirectly some effect (via module’s

Halstead V measure), because the variables, types, macros, etc. are

used in the modules.

Assuming that only this one file file1.cpp would be the “all files”,

the MI measures are calculated from the following values:

78

V=(48+33)/2, v(G)=(2+1)/2, LOCphy=(5+3)/2, LOCcom=(2+0)/2,

MIwoc=129, MIcw=35, MI=164.

It is the value 129 (contribution of comments excluded) or 164

(contribution of comments included), which is the single number

estimating the maintainability of the whole software system.

IIAA

79

Appendix C. Measuring Assembly Code

As of the CMT++ v3.3 the tool has supported also assembly code

measuring. Complete separate assembly files can be measured and

assembly code, which is inside of a C/C++ file.

Perhaps only the lines-of-code measures (LOCphy, LOCpro,

LOCcom and LOCbl) are meaningful with assembly code. CMT++

makes also some attempt to measure Halstead measures of

assembly code, but the algorithm for it is a bit heuristic. CMT++

does not measure McCabe of assembly code.

The following configuration file parameters are used when

measuring assembly code:

 ASSEMBLY_FILE_EXTENSIONS

 ASSEMBLY_ID_ADDON_CHARACTERS

 ASSEMBLY_COMMENT_CHARACTER

C.1 Measuring Complete Assembly Files

CMT++ recognizes that the source file is an assembly file from its

extension. For example, if we have in configuration file (or we

give the setting with -C option from command line)

ASSEMBLY_FILE_EXTENSIONS=asm,s,as and we give

command

 cmt file1.s file2.asm file3.cc

the two first files are considered to be assembly files and the third

one a C/C++ file. When a complete assembly file is measured, the

measures are collected per whole file only. Vs. in a C/C++ file the

measures can be collected per functions and summarized per file.

80

C.2 Measuring Assembly Code Inside A C/C++ File

Different C/C++ compilers support widely different ways in

expressing inline assembly code in a C/C++ source file. The

starting keyword is one of the following (CMT++ recognizes

these): asm, _asm, __asm, __asm__ .

The typical use cases are the following:

 asm one-liner-assembly-code

 asm {

many-assembly-code-lines

}

 asm("one-string-literal"); // official C++ way

 asm (C/C++-token-stream); // GNU C

The two first cases are measured as assembly code, the two latter

cases are measures normally, as if they were C/C++ code.

Some compilers support writing assembly blocks starting from

#pragma asm (or plain #asm) line and ending on #pragma endasm

(or plain #endasm) line. These are recognized as well.

C.3 Recognizing A Comment from An Assembly Code

First it should be noted that if assembly code has /*...*/ block

comments or // line comments, they are identified as in C/C++

code and calculated to LOCcom lines. Native assembly code has

also its own commenting style. It is assumed to be a line comment,

which starts with some indicated special character. CMT++ looks

this special character from configuration parameter

ASSEMBLY_COMMENT_CHARACTER. A typical value for it

is ';'. When parsing assembly code, and when this specified

character is met, the line end is considered to be comment.

For example, consider the following code fragment (inside a

C/C++ file):

...

__asm nop

81

__asm nop ; comment here

__asm nop // comment here

__asm nop /* comment here */

__asm /* comment here

 which continues upto here */

__asm {

nop ; comment here

; assembly comment here

nop /* comment here */

}

...Should the assembly comment character be ';', it's occurrences

are not calculated to the ';' count of C/C++ code.

C.4 Parsing Assembly Identifiers

In assembly code the identifiers may have a wider set of allowed

character than in identifiers in C/C++ code. CMT++ allows in

C/C++ identifiers the following characters: A-Z, a-z, 0-9, _, $.

When parsing assembly code, CMT++ consults the configuration

parameter ASSEMBLY_ID_ADDON_CHARACTERS. If the

character is one of the specified additional characters, it is

associated to the assembly identifier (vs. the identifier would be

split into two or more tokens). For example, if we have setting

ASSEMBLY_ID_ADDON_CHARACTERS=.@ , and we have

the following assembly code

...

.title "SomeTitle"

.include somefile.inc

...

.ref __SOME_NAME

...

MOV .S1, .S2

...

The tokens are identified as you would intuitively assume. Notably

the '.' can be a part of an identifier. On the other hand, this

"correct" identifier association is relevant primarily only for

Halstead measure calculation.

C.5 Lines-Of-Code Measuring from Assembly Code

The LOCphy, LOCpro, LOCcom, LOCbl measures are calculated

normally. /*...*/ and // comments in assembly code are calculated

as comments, too.

82

C.6 McCabe Measuring from Assembly Code

CMT++ does not measure McCabe from assembly code.

C.7 Halstead Measuring from Assembly Code

Halstead measure is based on the number of operators (N1),

number of operands (N2), number of unique operators (n1) and

number of unique operands (n2) in a piece of code. All other

Halstead measures are arithmetic derivatives from these.

As a first rule, CMT++ categorizes the token stream from an

assembly code into operands and operators in the same way as it

does it with C/C++ code. The following heuristic rule is an

exception, when assembly code is being processed: If the token is

the first token on line or the token is preceded with asm (or _asm,

__asm), the token is considered to be an operator.

Consider the following assembly code fragment:

...

__asm mov a, b

...

__asm {

 nop

 mov a, b

}

...

Here __asm, mov, nop, {} and ',' are operators. a and b are

operands.

IIAA

83

Appendix D. cmt Error Messages

Each cmt error message takes one of the following forms:

 *** CMT++ error error-code : While processing file

 file-name around line line-number

 error-text

or

 *** CMT++ fatal error error-code :

 error-text

or
 *** CMT++ warning error-code : While processing file

 file-name around line line-number

 error-text

where error-code is an integer value used to identify the error (helps

in communicating with Testwell) and error-text is the actual error

message. The message portion While processing file file-name

around line line-number comes only if the message is related to

processing of some file.

As a program cmt returns an exit code to the operating system level.

The exit codes are the following:

0 cmt run ended normally with no error messages.

1 cmt run ended normally but some error messages were

written.

2 cmt run ended to a fatal error and the run was aborted.

These messages are written to stderr.

The possible error-texts are the following:

Bad combination of options on command line, type -h to get help

84
84

 For example there was -x and -l options at the same time.

Bad –C option: the_bad_option_value

 Bad –C option value given on command line.

Bad conf parameter 'xxx'

 Configuration file contained a bad parameter definition.

Bad definition xxx in configuration file

 Bad definition in configuration file

Huge string literal, cutted

 The string is longer than CMT++ is prepared for; only the

string begin is reported. (Warning only)

Cannot create file filename

 Creation of the given file for CMT++ run output failed.

Cannot open file filename

 The given source file could not be opened.

CMT++ run aborted

 After searching all the locations for configuration parameters

and noticing the possible -c option there still was one or more

required configuration parameters unset. The previous

message described the more detailed reason.

Could not find configuration file filename

 The configuration file given explicitly in the -c option could

not be opened, or, in the absence of -c option, none of the

configuration files were found from default search locations.

Could not read file filename

 Configuration file reading or closing had failed.

Internal error

 CMT++ internal sanity checks for its behavior. Assuming

your source is correct C/C++ you should not get these. If you

are measuring non-preprocessed source code and you are

using macros or conditional compilation in some unstructured

85
85

way, you may end up to this message. Try measuring

preprocessed version of the same file.

License problem: problem-description

 There is a problem in your CMT++ license as described in the

problem-description, for example "copy protection module

not found", "the license has expired", "IP address of this

machine (xx.xx.xx.xx) is not listed in the COMPUTER field in

the configuration file", etc. (These license control routines are

used in all Testwell C/C++ test tools)

Out of memory

 CMT++ detected a short of memory condition.

Syntax error: unterminated comment

 Comment block starting with /*... ended with EOF.

There is a problem with software license

 There is a problem with software license.

Unexpected end of file.

 Unexpected end of file in source file reading.

No matching 'c' between lno and end of file

 On line lno there was a starting ‘<’, ‘(‘, or ‘{‘, but it had no

matching closing ‘c’ (one of ‘>’, ‘)‘, ‘}’).Your source code is

not correct C/C++ or you are measuring non-preprocessed

source code and the use of macros or conditional compilation

caused CMT++ not to recognize the source correctly.

Unknown or badly placed option -xxx, type -h to get help

 The option is not known to CMT++ or it is placed after the

source file names on the command line.

Unrecognised input token

 Are you sure that the source code is correct C/C++.

<Fatal error message related to configuration file handling>

 These messages have error code 2. There are a number of

possible messages of this category (used in all Testwell

86
86

C/C++ tools), like "missing license parameter: xxx", "TOOL

mismatch", "wrong TOOL version", etc.

IIAA

87

Appendix E. cmt2html Error Messages

The cmt2html error messages are written to stderr and they have the

following form:

 cmt2html: error message

where the error message can be one of:

Error commandline option: option

 Bad option when invoking cmt2html.

Error input line: linenumber

 The input file seems to be not of the CMT++ report type that

cmt2html assumes as input, detected at the given line.

File filename exists and is not a directory

 Output directory filename could not be created. Rename the

blocking file to another name or use another directory name.

Can not open file filename for writing: op_syst_error_text

 For some reason this operation failed.

Can not open file filename for reading: op_syst_error_text

 For some reason this operation failed.

Unexpected end of file: inputfilename

 The input file ended unexpectedly.

IIAA

88

Index

Assembly code .. 3, 79

C# code ... 3

C/C++ language .. 65

non-preprocessed vs. preprocessed source .. 65

C/C++/C# compiler ... 8

cmt options

-c conffiles ... 20

-C confparam=value .. 21

-f filenames .. 22

-h 20

-H .. 20

-j 22

-jf 22

-l 22

-lf 22

-nxh ... 21

-o outfile .. 22

-s 21

sourcefile... .. 22

-v 21

-w .. 21

-x 21

CMT++ ... 1

examples.. 22, 23, 25

Graphical User Interface ... 1

interactive use ... 23

starting from command line ... 19

cmt2html options

-h 51

-i inputfile .. 51

-l splitsize .. 52

-no-html-sources .. 53

-no-javascript .. 53

-nsb .. 53

-o outputdir .. 52

-p prefix ... 53

-s sourcedir .. 52

Complexity measures report

Excel form ... 20, 49

HTML form... 19

long form (JSON) .. 19

long form (XML) .. 19

short form .. 19, 30

XML form ... 20

Configuration files

searching ... 20

Configuration parameters

ASSEMBLY_COMMENT_CHARACTER ... 15, 80

ASSEMBLY_FILE_EXTENSIONS... 14, 79

ASSEMBLY_ID_ADDON_CHARACTERS ... 15, 81

89
89

B_CORRECTION_FACTOR ... 12, 61, 72

B_FILE_MIN .. 12

COMMENT_FUNCTION_MIN .. 10

COMMENT_RATIO_FILE_MIN .. 10

COMMENT_RATIO_FUNCTION_MIN .. 10

CSHARP_FILE_EXTENSIONS .. 14

DESTRUCTOR_LOC_MIN ... 11

DESTRUCTOR_V_FUNCTION_MIN .. 12

EXCEL_FIELD_SEPARATOR ... 14, 50

FLEXLM_LICENSE_FILE .. 16

KEYPORT .. 15

license parameters ... 15

LOC_FILE_MIN .. 11

LOC_FUNCTION_MIN ... 11

MCCABE_FILE_MIN .. 13

MCCABE_FUNCTION_MIN .. 12

MCCABE_PREFERENCE ... 13, 50, 58, 73

MI_FILE_MIN ... 13

MI_FUNCTION_MIN .. 14

MI_PREFERENCE ... 13, 61

NO_COMMENT_WARNINGS_BELOW ... 11

NOTICE_LEADING_COMMENTS .. 11

V_FILE_MIN ... 12

V_FUNCTION_MIN .. 12

Cyclomatic complexity .. 5

Environment variables

CMTHOME .. 20

CMTINIT .. 20

use in configuration file ... 9

Excel output .. 49

Halstead metrics .. 5, 68

B (bugs) ... 6, 60, 72

D (difficulty level) ... 6, 71

E (effort).. 6, 72

L (program level) .. 6, 72

N (program length) .. 6, 71

n (vocabulary size) .. 6, 71

N1 (operators) ... 6, 68

n1 (unique operators) .. 6, 68

N2 (operands).. 6, 68

n2 (unique operands) ... 6, 68

operator/operand classification ... 69

recommendations .. 60

T (time) ... 6, 72

V (volume) .. 6, 60, 71

Html report .. 51

Installing.. 1, 8

K&R1 level C .. 66

Lines of code metrics .. 5, 57, 67

LOCbl ... 5, 67

LOCcom .. 5

LOCphy ... 5, 67

LOCpro ... 67

recommendations .. 57

Maintainability Index .. 76

at file level ... 77

at module level .. 77

at system level ... 78

comment weight .. 76

90

MI/MIwoc ... 61

module ... 76

with comments .. 76

without comments ... 76

Maximum nesting depth .. 6, 60, 75

McCabe metrics .. 72

conditional compilations ... 59

cyclomatic number .. 5, 58

recommendations .. 59

v(G) ... 72

On-line help ... 19, 20

Perl .. 55

Piping source file names to CMT++ ... 24

Semicolons .. 6

stderr ... 83

stdin ... 25

stdout ... 22

