
01 March 2024

Change Documentation for

Testwell CTC++

Version 10.1.0

Verifysoft Technology GmbH Testwell CTC++, Version 10.1.0

01 March 2024 Change Documentation

 1/6

Features and Changes

Justifications

Missing coverage can now be justified, and these justifications transparently influence all coverage

measures.

Justifications can be stored in source code comments or in companion files. With a justification, a tag

used for grouped presentation in overviews and an explanation are associated.

Example in source code:

// CTC++ Justify False | EFFORT: Simulation too expensive, because…

if (world_still_exists) …

Coverage charts

In ring and bar charts of the HTML report, the visualization changes.

▪ Covered parts are always shown in dark blue.

▪ If coverage ratio is below threshold (white mark), missing coverage up to the threshold is

colored in light red. Missing coverage above threshold is shown in light grey.

▪ Influence of justifications is shown in a lighter blue.

Single-file text templates

Beside structured HTML reports, also text-based reports can now be generated with ctcreport. This

report generation is fully based on templates, adaptable by the user.

With these templates, coverage information on project (overall), directory, file, and function level

can be reported. Coverage below function level, e.g. for probes, lines etc., is still exclusively reported

in source code view of structured templates.

With installation, three single-file templates are delivered in the ctcreport folder:

Verifysoft Technology GmbH Testwell CTC++, Version 10.1.0

01 March 2024 Change Documentation

 2/6

▪ example_csv.csv: coverage per function,

▪ example_xml.xml: overall coverage and hierarchically per directory, file, and function,

▪ example_markdown.md: coverage per source file, grouped by directories.

Templates from arbitrary locations

HTML templates as well as new single-file templates do not need to be in ctcreport folder anymore.

With option -template in ctcreport call, any file can be referenced using a file extension:

ctcreport -template corporate-design.zip …

looks for corporate-design.zip (i.e., an HTML template) in current directory.

ctcreport -template example_csv …

looks in ctcreport folder and uses the first template file with this base name, for example

example_csv.csv.

Origin of instrumented files

Instrumented included files can exist in many copies – one for each including source file in a project.

ctcreport aggregates these copies into one or more variants due to preprocessing (#ifdef etc.).

In source code view of each variant, the including source files leading to this variant are now listed.

This list is grouped by symbol file containing either one or more including files or a direct

instrumentation of the considered file or file variant.

Reduction of deprecated ctc macros

For instrumented builds, several macros are no longer supported by ctc.h:

CTC_COND_OPER_NO_INSTR, CTC_DECL_COND_NO_INSTR, CTC_EMIT_RCS_STAMP,

CTC_RCS_STAMP, CTC_EMIT_SCCS_STAMP, CTC_SCCS_STAMP.

Unified const recognition

For decisions in ternary-? operators, the same recognition for compile-constantness is now used as

for other decisions.

Handling of Testwell CTC++ Help from command-line

▪ With new option -H, tools ctc, ctcreport, ctcpost, ctclaunch, ctc2dat, and ctcxmlmerge open

the Testwell CTC++ Help in standard browser with the tool’s description as landing page.

▪ With -H word, the search function is opened with “word” as search term.

▪ For Linux and macOS, man pages are no longer provided. Existing man pages from a former

installation are not deleted, please delete them as they are no longer updated.

Verifysoft Technology GmbH Testwell CTC++, Version 10.1.0

01 March 2024 Change Documentation

 3/6

Performance Improvement for Report Generation

For large projects with some thousand source files, HTML report generation including source code

view is much faster now.

Bottleneck in this case was the navigation generated to browse between source files. You can

achieve an additional performance improvement with an adapted HTML template omitting this

navigation element.

Refinement of line execution information

In HTML reports, executable source code lines are highlighted in red (not executed), yellow (partially

executed), or green (executed). With this version, more lines are recognized as partially executed.

Line 6 in

is now categorized as partially executed. With earlier versions, this was not the case as the block

{x++;} does not contain any counters. The block-closing “}” must be on the same line for this

recognition to work.

Warnings of ctc

The distinction between “info” category and “warning” is harmonized: All currently existing non-

error messages are ”warnings” now. This can lead to more warnings with setting WARNING_LEVEL =

warn in ctc.ini.

A new warning is introduced for C++ functions with specifier constexpr. These functions are not

instrumented, and the new warning informs about their presence.

Changes in Windows Installer

▪ The complete package including HOTA libraries and BITCOV support is now always installed.

▪ When a local license file is used, the location for this file can be overwritten in dialogue.

▪ When installing over an existing installation, ctcreport folder, ctclaunch.ini and still ctc.ini

are now copied on request. Contrary to previous versions, ctc.ini is now always renewed.

Removal of SOURCE_IDENTIFICATION

The configuration parameter SOURCE_IDENTIFICATION is no longer supported. During

instrumentation, ctc always records full paths to source files in symbol file. This harmonizes many

differences between included and directly instrumented files.

Removal of ctcdiff

The tool ctcdiff for comparing ctcpost’s text reports of different test runs is no longer part of the

Testwell CTC++ package. If you use it, please get in contact with us.

Verifysoft Technology GmbH Testwell CTC++, Version 10.1.0

01 March 2024 Change Documentation

 4/6

Bug Fixes

Not recognized Boolean expressions

Multicondition instrumentation was incomplete or missing, if the left-hand side of the and-operator

corresponded to a type or a function from a namespace used with using namespace, or to a type in

the same namespace.

Example:

The expression in line 9 is correctly instrumented, but the one in line 8 was not. left was mixed up

with std::left and the rvalue reference recognition introduced with version 9.1.1 caused a

misinterpretation.

C++ spaceship operator

Spaceship operator <=> was processed as <= > by ctc, leading to uncompilable code.

Statement and line coverage after assignments

When a multicondition inside an assignment only evaluated to false, following statements were not

counted as covered and corresponding lines were highlighted in red.

Parallel builds using BITCOV

For parallel builds with BITCOV instrumentation, it was possible that the generated auxiliary file

MON.aux was corrupted. The locking mechanism in responsible script ctc2static is now improved.

Corrupted symbol file

During instrumentation, ctc did not record the symbol file correctly in a situation like

if (1)

 use_lambda([&] (void) -> void { ;});

else

 do_something();

A lambda function inside an if branch without {…} led to missing information for the else branch. In

consequence, ctcpost miscalculated coverage for the corresponding function and ctcreport ended

with an error.

Verifysoft Technology GmbH Testwell CTC++, Version 10.1.0

01 March 2024 Change Documentation

 5/6

Init-statements in decisions

With C++ 17 and beyond, init-statements may precede decisions in if-statements:

if (int x = foo(); a && b)...

if (foo(); a && b)...

For the second example, instrumentation led to uncompilable code.

When instrumented with multicondition, the first example was instrumented for decision coverage

only.

Init-statements in range-based for loops (C++ 20) are now also supported, they led to a syntax error

of ctc:

for (int the_answer=42; int r:my_array)...

Multiple source file representations in data files

In one data file (MON.dat), every source file is typically represented only once. However, the

runtime-layer of Testwell CTC++ generates duplicates for source files present in an executable and in

a DLL / shared object loaded by this executable. ctcreport could not handle this situation and ended

with an error. The same error occurred when two source file identifiers in one data file were mapped

to one target with option -map-source-identification.

Windows path spelling issues in HTML report

Differently spelled paths to source files during instrumentation, like

C:\projects\…

c:\projects\…

C:/projects/…

present in symbol and data files could lead to duplicated directories or files in HTML report.

Inactive lines from header files

Header files included more than once, but protected with include guards, could lead to source code

lines wrongly assumed as inactive in HTML report. This behavior was compiler-dependent and for

example present for Microsoft’s Visual C++ compiler cl.

Handle-leaks of ctcreport

ctcreport could cause handle-leaks when processing symbol files, data files and report files.

Full support of code structures in symbol files by ctcreport

Following elements led to an error of ctcreport and are correctly processed now:

▪ function-try-blocks,

▪ Java finally statements,

▪ #pragma CTC ANNOTATION … located between if-branch and else.

Member initializing mixed up with function body

For certain member function definitions, ctc instrumented a member initialization as if it was a

function body, leading to uncompilable code.

Example: {h} in

foo::Bar::Bar(Helper& h) : Base<Helper>{h} {…}

Verifysoft Technology GmbH Testwell CTC++, Version 10.1.0

01 March 2024 Change Documentation

 6/6

where foo is a namespace, Base a template class declared in this namespace and Bar a derived class.

Initialization of multidimensional arrays

Outside functions, initialization of multidimensional arrays with initializer lists like

int evil_array[3][5] {666};

could cause ctc to misinterpret the code as a lambda function.

Wrong function naming

Functions called like namespaces or classes got a wrong name by ctc. In this example

namespace one {

 /*...*/

}

namespace two {

 void one(){}

}

function two::one() was named as one::one().

Declarations in if statements with BITCOV

When instrumented with BITCOV, counter information could get lost for false counters of if-decisions

with a declaration inside like

if (int a = foo())

Additional variants

If any preprocessor variants of a source file were identified correctly by ctcreport, it was possible

that additional variants were falsely identified. For the same set of source files, this could occur or

not, purely dependent from build order.

Multiple function loops

In HTML templates for source code view, more than one function loop led to a ctcreport error.

Header extraction with ctcpost

The former way of header handling by ctcpost did not work properly for versions 10.0.0 and 10.0.1,

due to changed symbol file format: Equal header copies were considered different and in

consequence not extracted from their including source file.

	Features and Changes
	Justifications
	Coverage charts
	Single-file text templates
	Templates from arbitrary locations
	Origin of instrumented files
	Reduction of deprecated ctc macros
	Unified const recognition
	Handling of Testwell CTC++ Help from command-line
	Performance Improvement for Report Generation
	Refinement of line execution information
	Warnings of ctc
	Changes in Windows Installer
	Removal of SOURCE_IDENTIFICATION
	Removal of ctcdiff

	Bug Fixes
	Not recognized Boolean expressions
	C++ spaceship operator
	Statement and line coverage after assignments
	Parallel builds using BITCOV
	Corrupted symbol file
	Init-statements in decisions
	Multiple source file representations in data files
	Windows path spelling issues in HTML report
	Inactive lines from header files
	Handle-leaks of ctcreport
	Full support of code structures in symbol files by ctcreport
	Member initializing mixed up with function body
	Initialization of multidimensional arrays
	Wrong function naming
	Declarations in if statements with BITCOV
	Additional variants
	Multiple function loops
	Header extraction with ctcpost

