
Technical White Paper

Simplifying DO-178B Certification with
GrammaTech Static Analysis Tools

Introduction
DO-178B, “Software Considerations in Airborne Systems and Equipment
Certification”[1], is a standard published by RTCA, Inc and developed jointly with
EUROCAE, the European Organization for Civil Aviation Equipment. Designed
for international use, it provides production guidelines for software that is to be
used in airborne systems and equipment and that consequently must “comply
with airworthiness requirements”.

This document describes how GrammaTech’s static analysis tools CodeSonar®

and CodeSurfer® can be used together and separately to support an
organization’s DO-178B activities. CodeSonar performs whole-program,
interprocedural analysis on C and C++ source code, identifying programming
bugs that can result in system crashes, memory corruption, and other serious
problems. It includes numerous workflow automation features, including an API
for custom integrations and support for extensions that add custom checks.
CodeSurfer is a program-understanding tool that does precise source code
analysis, calculating a variety of representations that can be explored through the
graphical user interface or accessed through an optional programming API.
CodeSonar finds bugs automatically, while CodeSurfer makes manual review of
code easier and faster.

The use of CodeSonar and CodeSurfer is most applicable to DO-178B chapters 6,
7, 11, and 12, so these are the chapters discussed in this paper. It is worth noting,
however, that GrammaTech static analysis tools can also support various
activities and objectives from other chapters. In particular, CodeSonar can
provide value throughout the Software Development Process (chapter 5), and the
completion of a CodeSonar analysis – perhaps with a limit on the permissible
number of warnings – is a useful transition criterion (chapter 4) in many cases.

1

http://www.grammatech.com/products/codesonar/
http://www.grammatech.com/products/codesurfer/

Typographical Conventions
The following typographical conventions are used in this document.

	 CodeSonar warning class names are rendered in italic, sans-serif font: Null
Pointer Dereference. If the warning class is disabled by default, the class
name is marked with an asterisk: Recursive Macro*.

 Software life cycle data artifacts defined in DO-178B Chapter 11 are
capitalized: Software Design Standards.

 Direct quotes from the DO-178B document are formatted like the
following:

“The rapid increase in the use of software in airborne systems and
equipment used on aircraft in engines in the early 1980s resulted in a
need for industry-accepted guidance for satisfying airworthiness
requirements.”

2

DO-178B Chapter 6: “Software Verification Process”
“The purpose of the software verification process is to detect and report
errors that may have been introduced during the software development
processes.”

GrammaTech CodeSonar and CodeSurfer bring powerful static analysis
capabilities to the Software Verification Process. DO178-B sections 6.3 (Software
Reviews and Analyses) and 6.4 (Software Testing Process) describe verification
objectives that are well supported by these tools, as described below.

6.3 Software Reviews and Analyses
“Reviews and analyses are applied to the results of the software
development processes and software verification process. One
distinction between reviews and analyses is that analyses provide
repeatable evidence of correctness and reviews provide a qualitative
assessment of correctness.”

It is useful to think of both CodeSonar and CodeSurfer as performing analyses
whose outputs can be used to inform manual reviews.

6.3.3 Reviews and Analyses of the Software Architecture
CodeSonar and CodeSurfer provide complementary support for architecture
review. CodeSurfer provides architecture visualization and sophisticated query
functionality, while CodeSonar’s built-in checks and extension capabilities allow
many architecture problems to be flagged automatically.

“a. Compatibility with the high-level requirements: The objective is to
ensure that the software architecture does not conflict with the high-level
requirements, especially functions that ensure system integrity, for
example, partitioning schemes.”

Architecture reviewers can use CodeSurfer to inspect structural properties of the
software at a number of levels of detail. The CodeSurfer GUI allows interactive
browsing of the various structural elements, while the optional programming API
provides automation capabilities and broad potential for customization. Both
GUI and API provide powerful built-in queries, such as slicing, that can be used
to check the integrity of partitioning schemes.

 “b. Consistency: The objective is to ensure that a correct relationship
exists between the components of the software architecture. This
relationship exists via data flow and control flow.”

CodeSurfer allows users to examine both control flow and data flow from a
number of perspectives. Among those most useful for inspecting the relationship
between software architecture components are the control flow graph and call
graph. The results of control- and data-related queries can be superimposed on
these graphs, providing a straightforward depiction of the dependences involved.

3

“c. Compatibility with the target computer: The objective is to ensure
that no conflicts exist, especially initialization, asynchronous operation,
synchronization and interrupts, between the software architecture and
the hardware/software features of the target computer.”

Several built in CodeSonar checks can detect potential compatibility problems,
including Uninitialized Variable, Double Lock, Double Unlock, Try‐lock that will never

succeed, and Shift Amount Exceeds Bit Width.

“d. Verifiability: The objective is to ensure that the software architecture
can be verified, for example, there are no unbounded recursive
algorithms.”

While demonstrating the complete absence of unbounded recursion is of course
provably impossible in general, CodeSonar offers several checks that help reduce
the likelihood that infinite recursion will occur. If the system architects choose to
forbid recursion entirely, the Recursion* and Recursive Macro* checks can be
enabled in order to detect violations. If recursion is to be permitted, the Excessive

Stack Depth* check can identify potential cases of runaway recursion. Similarly,
CodeSonar’s Potential Unbounded Loop* check does not and cannot detect all
infinite iterative loops in all programs, but will identify many loops whose
boundedness cannot be established.

“e. Conformance to standards: The objective is to ensure that the
Software Design Standards were followed during the software design
process and that deviations to the standards are justified, especially
complexity restrictions and design constructs that would not comply
with the system safety objectives.”

CodeSurfer computes many standard complexity metrics, whose values can be
compared against limits set out in the Software Design Standards. The metrics
are computed at the project, file, and function levels, allowing designers to easily
identify problem areas.

If system safety objectives are such that specific design constructs must be
restricted or forbidden, custom CodeSonar checks can be written to issue
warnings whenever those constructs are encountered.

“f. Partitioning integrity: The objective is to ensure that partitioning
breaches are prevented or isolated.”

CodeSurfer allows users to trace both control and data through the various
possible executions of a program. Users can obtain answers to such questions as
“can data in region A influence execution in region B?”, “is there an execution
path between region C and region D?”, and “what are the callers of function F?”
The optional Path Inspector™ extension to CodeSurfer can be invoked to confirm

4

that execution flow from one part of the program cannot reach another part (and,
if necessary, vice versa).

Custom CodeSonar checks can also be used to detect partitioning breaches
automatically.

Explicit control and data flow may not be the only avenues for breaching
partitioning requirements. In some cases other channels, such as the file system,
must be considered. Designers may elect to forbid use of the file system entirely,
in which case custom CodeSonar checks for uses of file-related functions and data
types will be extremely useful. Alternatively, file usage may be permitted under
restricted circumstances, in which case the custom checks will need to verify that
the appropriate conditions hold whenever files are used.

6.3.4 Reviews and Analyses of the Source Code
Source code analysis is the most significant strength of both CodeSonar and
CodeSurfer. A full accounting of the reviews and analyses supported by these
products is not possible in this space; instead we outline some key features.

“b. Compliance with the software architecture: The objective is to ensure
that the Source Code matches the data flow and control flow defined in
the software architecture.”

CodeSurfer provides powerful functionality for visualizing data and control flow
in software, and for answering complex queries about both. Users can compare
the flow computed by CodeSurfer to that defined in the software architecture to
identify any discrepancies. CodeSurfer’s pointer analysis means that pointer
aliasing and indirect function calls are accurately accounted for.

If control flow requirements specify a particular operation sequence that must be
adhered to, CodeSonar can be extended with a custom check that issues warnings
whenever the operations appear out of order.

“c. Verifiability. The objective is to ensure that the Source Code does not
contain statements and structures that cannot be verified and that the
code does not have to be altered to test it.”

Both CodeSonar and CodeSurfer observe the normal build process for a software
project and use the information thus gained to construct an internal
representation that is then subjected to various analyses. The production code
does not need to be altered in any way.

“d. Conformance to standards: The objective is to ensure that the
Software Code Standards were followed during the development of the
code, especially complexity restrictions and code constraints that would
be consistent with the system safety objectives....”

5

CodeSonar provides significant support for upholding coding standards, both
through built-in checks for standard rule sets such as Power of Ten[4] and
through a rich API that allows users to implement custom checks in support of
local code standards. 11.7 Software Design Standards and 11.8 Software Code
Standards detail the ways in which CodeSonar can support and enforce a wide
range of software standards.

“f. Accuracy and consistency: The objective is to determine the
correctness and consistency of the Source Code, including stack usage,
fixed point arithmetic overflow, resource contention, worst-case
execution timing, exception handling, use of uninitialized variables or
constants, unused variables or constants, and data corruption due to
task or interrupt conflicts.”

CodeSonar performs a large number of correctness and consistency checks,
including those for the following warning classes:

 Excessive Stack Depth*

 Buffer Overrun, Buffer Underrun

 Type Overrun, Type Underrun

 Cast Alters Value, Integer Overflow of Allocation Size

 Uninitialized Variable

 Unused Value

 Deadlock, File System Race Condition

6.4 Software Testing Process
CodeSonar’s static analysis can detect several of the problems listed as
identifiable through requirements-based testing methods, and can help resolve
questions arising from test coverage analysis.

6.4.3 Requirements-Based testing methods
Static analysis is not a substitute for testing but a complement to it, and in some
cases will find problems that tests miss.

“a. Requirements-Based Hardware/Software Integration Testing”
“b. Requirements-Based Software Integration Testing”.
“c. Requirements-Based Low-Level Testing”

CodeSonar can detect many of the “typical errors revealed by [these] testing
method[s]” early in the software development process. The relevant CodeSonar
warning classes are shown in the following table.

Error CodeSonar Warning Class(es)
“Stack overflow.” Excessive Stack Depth*
“Incorrect initialization of variables
and constants.”

Uninitialized Variable, Double
Initialization

6

“Parameter passing errors.” Function Call Has No Effect,
Unreasonable Size Argument

“Data corruption, especially global
data.”

Buffer Overrun, Buffer Underrun, Type
Overrun, Type Underrun, MAX_PATH
Exceeded, No Space for Null Terminator,
Return Pointer to Freed, Return Pointer
to Local, Use After Close, Use After Free

“Inadequate end-to-end numerical
resolution.”

Cast Alters Value

“Incorrect sequencing of events and
operations.”

Double Lock, Double Unlock, Try‐lock
that will never succeed, Free Null
Pointer, Null Test After Dereference

“Incorrect loop operations” Potential Unbounded Loop*

6.4.4 Test Coverage Analysis
“Test coverage analysis is a two step process, involving requirements-
based coverage analysis and structural coverage analysis. The first step
analyzes the test cases in relation to the software requirements to
confirm that the selected test cases satisfy the specified criteria. The
second step confirms that the requirements-based test procedures
exercised the code structure.”

CodeSonar and CodeSurfer can be useful in the resolution phase of test coverage
analysis, if this is required.

6.4.4.3 Structural Coverage Analysis Resolution
Structural coverage analysis may reveal code structure that was not
exercised during testing. Resolution would require additional software
verification process activity. This unexecuted code may be the result of:...

“...c. Dead code”

“...d. Deactivated code”

In some cases, a test suite may be unable to exercise a particular code region
because the region is in fact unreachable. If structural coverage analysis
resolution is to include a diagnosis of dead or deactivated code, it can be useful to
support this diagnosis with static analysis results.

CodeSonar detects unreachable code as part of its standard analysis suite.
Distinct warning classes Unreachable Call, Unreachable Computation, Unreachable

Conditional, Unreachable Control Flow, and Unreachable Data Flow identify the most
important element present in each unreachable region, providing the user with
additional information about the consequences of not executing the code.

In some cases code is unreachable because it is guarded by a conditional
statement that can only ever evaluate one way. CodeSonar’s Redundant Condition
warning class is designed to identify such situations.

7

CodeSurfer provides complementary information about code reachability at
several levels of detail. Users can determine whether there are entire functions
that are never called using the program call graph. At the statement level, a
point-mode forward slice from the program entry point will compute all code
that can be reached; any code not in this set is therefore unreachable.

Note that both CodeSonar and CodeSurfer work by analyzing a specific build of a
software project. To establish that code is unreachable under all applicable build
configurations (for example, unreachable on all target platforms, or under all
permitted preprocessor settings), the analyses must be applied to all these builds
and the results compared.

DO-178B Chapter 7: Software Configuration Management
Process
While CodeSonar and CodeSurfer are not themselves software configuration
management tools, they can interact with the Software configuration
management process in several useful ways.

7.2 Software Configuration Management Process Activities
GrammaTech tools can be used in support of the following software configuration
management process activities.

7.2.2 Baselines and Traceability
Where unambiguous labels have been assigned to configuration items,
CodeSonar provides several powerful mechanisms for applying corresponding
labels to analysis artifacts generated for those items. When a labeled
configuration item is analyzed with CodeSonar:

 The analysis can be annotated with the same label, either directly or
retroactively.

 A user can manually annotate all warnings issued by the analyses with the
label (all at the same time, if desired).

 A custom warning processor can automatically annotate each warning
issued by the analysis with the label. With further customization,
annotation can be restricted to a particular subset of the warnings, for
example only those that were issued for the first time (that is, not seen in
any previous analysis).

The flexible search in CodeSonar includes functionality that allows users to find
all warnings that have a particular annotation, or that were issued by an analysis
with a particular annotation. The annotation capability thus provides direct
traceability between a particular configuration item and the analysis results for
that item.

8

From time to time it may be necessary to analyze projects in which different
components have different configuration identifiers. CodeSonar can provide
traceability even in this case: the only differences are that the analysis annotation
will need to include all relevant labels, and the warning processor (or person)
responsible for annotating warnings will need to take each warning’s location
into account when assigning its label.

Similarly, when a baseline is established for a configuration item, CodeSonar
annotations can be used to identify analysis artifacts associated with that
baseline.

7.2.3 Problem Reporting, Tracking, and Corrective Action
Problem reporting and tracking are key roles of CodeSonar. Each analysis of a
project issues a number (possibly zero) of warnings. As a project undergoes a
cycle of modification and re-analysis over time, the CodeSonar hub builds up a
historical record. Information is kept about each analysis, including the warnings
issued, files analyzed, build settings on which the project was based, and
annotations made. At a finer-grained level, the “same” warning can be tracked
over time, determining the analysis in which it first appeared and (if the
underlying problem is successfully fixed) the analysis in which it first went away.
CodeSonar keeps all annotations for each warning (except for cases where an
analysis has been explicitly deleted), so a history of notes, priority
determinations, owners, and assessments is built up over time.

The CodeSonar hub is not restricted to warnings issued by the CodeSonar
analysis. For example, CodeSonar ships with an example script that uploads the
warnings issued by a FindBugs™[5] analysis to a CodeSonar hub; scripts that
upload analysis results from other tools with different output formats are
similarly possible.

Conversely, warnings issued by the CodeSonar analysis are not restricted to the
CodeSonar hub. Custom warning processors can send analysis results to external
tools, and can be applied either at analysis time or retroactively to individual
warnings and groups of warnings. CodeSonar ships with a processor that creates
a bug report concerning one or more CodeSonar warnings and submits it to a
Bugzilla[2] database.

7.2.4 Change Control
“e. Throughout the change activity, software life cycle data affected by
the change should be updated and records should be maintained for the
change control activity.”

As described in 7.2.3 Problem Reporting, Tracking, and Corrective Action,
CodeSonar by default keeps substantial records of past and present analysis
results and the relationships between them. In cases where these records must be
expanded upon, they can readily be exported in a variety of formats. When
traceability between a particular change and the analysis of the changed software

9

is important, CodeSonar provides several mechanisms for making the connection
explicit; these are described in 7.2.2 Baselines and Traceability.

7.2.5 Change Review
Just as CodeSonar warning processors can be used to apply annotations to
warnings (7.2.2 Baselines and Traceability) or to submit them to third-party
trackers (7.2.3 Problem Reporting, Tracking, and Corrective Action), they can be
used to assign warnings to specified reviewers. During the early development
stages, a warning processor might be configured to assign each incoming warning
to the engineer who last modified the source file containing the warning. Later, a
warning processor might use the software level of the affected code to assign a
priority to each incoming warning and then assign it to an engineer of
appropriate seniority.

DO-178B Chapter 11: Software Life Cycle Data
“Data is produced during the software life cycle to plan, direct, explain,
define, record, or provide evidence of activities.”

The Software Life Cycle Data defined by DO-178B include Plans with activities
that can be accomplished using GrammaTech static analysis tools. In addition,
several of the specified Standards can be supported or partially supported by
these tools.

11.7 Software Design Standards
GrammaTech static analysis tools can be used to support and enforce a number
of the Software Design Standards listed in DO-178B section 11.7.

“b. Naming conventions to be used.”

As described in 11.8 Software Code Standards, CodeSonar users can author
custom checks for violations of naming conventions.

“c. Conditions imposed on permitted design methods, for example,
scheduling, and the use of interrupts and event-driven architectures,
dynamic tasking, re-entry, global data, and exception handling, and
rationale for their use.”

It is straightforward to write custom CodeSonar checks on the use of global data
or exception handling: such checks would inspect the internal representation and
issue warnings whenever the relevant artifacts were observed (or observed
outside permitted contexts).

“e. Constraints on design, for example, exclusion of recursion, dynamic
objects, data aliases, and compacted expressions.”

10

CodeSonar ships with several checks that support design constraints, and can be
extended to add others. The Recursion* and Recursive Macro* warning classes
behave as one might expect: CodeSonar issues warnings whenever functions (or
macros, respectively) are directly or indirectly recursive. Classes Dynamic

Allocation After Initialization* and Pointer Type Inside Typedef* are useful if the
design constraints limit but do not fully exclude the use of dynamic objects. If
dynamic objects are to be fully excluded, users can construct custom CodeSonar
checks that issue warnings whenever allocators are used. Similarly, the
CodeSonar extension mechanisms allow users to write checks for violations of
restrictions on data aliasing and on expression side-effects.

“f. Complexity restrictions, for example, maximum level of nested calls or
conditional structures, use of unconditional branches, and number of
entry/exit points of code components.”

As with the design constraints, CodeSonar has built in checks in support of some
forms of complexity restriction and can be extended to add checks for others.
Excessive Stack Depth* warnings are issued when the function call stack exceeds a
specified size: this expands on the notion of restricting call nesting by taking into
account the size of the execution record for each call. Several built in CodeSonar
checks cover various forms of unconditional branch: Empty if Statement, Empty

switch Statement, Redundant Condition, Goto Statement*, and Use of longjmp*. Users
can create custom CodeSonar checks for violations of other complexity
restrictions that might be included in a project’s Software Design Standards.

11.8 Software Code Standards
CodeSonar provides significant support for upholding coding standards, both
through built-in checks for standard rule sets such as Power of Ten[4] and
through a rich API that allows users to implement custom checks in support of
local code standards.

“a. Programming language(s) to be used and/or defined subset(s).”

The CodeSonar API provides access to the abstract syntax trees (ASTs) generated
for an analyzed software project. Users can leverage this access to author custom
checks that report errors when forbidden program features are used.

“c. Naming conventions for components, subprograms, variables, and
constants.”

Because the CodeSonar API provides full programmatic access to the internal
representation generated for its analysis, users can readily create custom checks
for naming convention violations and have these checks carried out as part of the
CodeSonar analysis. Checks can be targeted to specific program entities so can
easily handle naming conventions that impose, for example, one set of rules
governing the permissible names for variables and another for functions.

11

“d. Conditions and constraints imposed on permitted coding convention,
such as the degree of coupling between software components and the
complexity of logical or numerical expressions and rationale for their
use.”

Various code complexity metrics have become standard in software engineering
practice. CodeSurfer computes and reports a number of these standard metrics,
including the McCabe[6] and Halstead[3] metrics. CodeSonar will incorporate
this functionality in the near future.

The AST access provided by the CodeSonar API is useful here, as in previous
cases. Given an expression complexity limit specified by the Software Code
Standards, a user can create a custom check that issues a warning whenever the
analysis encounters an expression whose complexity exceeds this limit.

DO-178B Chapter 12: Additional Considerations
Of the additional considerations discussed in DO-178B Chapter 12, CodeSurfer
and CodeSonar are particularly applicable to section 12.1 (Use of Previously
Developed Software). The understanding, use, and modification of existing
software is a fundamental part of any software development effort, and
GrammaTech’s static analysis tools provide advanced capabilities for
accomplishing such tasks.

12.1 Use of Previously Developed Software
“The guidelines of this subsection discuss the issues associated with the
use of previously developed software,...”

Two significant issues for users of previously developed software are
understanding the software and trusting that it does not contain bugs and
vulnerabilities. CodeSurfer aids understanding of previously developed software
and its interaction with the overall system at multiple levels, including data and
control flow, call graphs, and effects on global values. To help with establishing
trust, CodeSonar can be applied to previously developed source code just as easily
as it can be applied to code under current development. Problems, including
security vulnerabilities such as buffer overflows – whether introduced
accidentally or deliberately – can thus be identified and marked for elimination.

12.1.1 Modifications to Previously Developed Software
“This guidance discusses modifications to previously developed software
where the outputs of the previous software life cycle processes comply
with this document. Modification may result from requirement changes,
the detection of errors, and/or software enhancements.”

Both CodeSonar and CodeSurfer are designed to support the iterative nature of
real-world software development.

12

“d. The area affected by a change should be determined.”

In general, modifications to a program can affect areas far removed from the site
of the modification, and sometimes in unexpected ways. CodeSurfer provides
powerful tools for identifying and understanding these effects. Given a program
region that has been modified, added, or removed, CodeSurfer users can obtain
answers to questions such as:

 Which statements are affected by the changed region, and which
statements affect it?

 How do the modifications affect the program call graph?
 How do control and data flow to and from the modified region?

The Path Inspector extension provides further support for impact analysis,
allowing users to issue complex queries about execution flow in the modified
program. For example, a user might invoke Path Inspector to confirm that
execution flow between two parts of the program does not pass through the
modified region, or that the modified region conforms to initialization
requirements.

“e. Areas affected by the change should be reverified considering the
guidelines of section 6.”

CodeSonar and CodeSurfer support reverification of areas affected by changes in
several important ways. Firstly, both products can be used to analyze partial
programs. Once the areas affected by a change have been identified, those in
charge of verification can thus choose to concentrate their resources on
reverifying only those affected areas. Secondly, CodeSonar and CodeSurfer both
support incremental analysis, in which only those parts of the internal
representation affected by changes in the code base are rebuilt and reanalyzed.
This can offer substantial time savings when analyzing large projects. Thirdly, the
CodeSonar hub database provides a historical record of the analyses for a
software project and the warnings issued by the analyses. Given a particular
warning, CodeSonar users can identify the analysis that first issued the “same”
warning (or a closely related one), and, if applicable, the analysis at which the
warning stopped being issued (because the underlying problem was fixed).

12.1.3 Change of Application or Development Environment
“Use and modification of previously developed software may involve a
new development environment, a new target processor or other
hardware, or integration with other software than that used for the
original application.”

The internal representations constructed by CodeSonar and CodeSurfer take into
account many aspects of the software being analyzed and the build process used
to construct that software, including the compiler or compilers, compiler options,
preprocessor settings, and the platform for which the software is being built. The

13

analyses carried out on these internal representations will likewise reflect these
factors. When a change in application or development environment leads to a
change in the project and its representation, CodeSonar and CodeSurfer can be
used to analyze the scope and impact of these changes in the same ways
described in 12.1.1 Modifications to Previously Developed Software.

12.1.4 Upgrading a Development Baseline
“Guidelines follow for software whose software life cycle data from a
previous application are determined to be inadequate or do not satisfy
the objectives of this document, due to the safety objectives associated
with a new application... Reverse engineering may be used to regenerate
software life cycle data that is inadequate or missing in satisfying the
objectives of this document.”

Just as CodeSonar and CodeSurfer can be used in support of the requirements of
DO-178B Chapter 6 for software currently under development, they can be
applied to previously developed software to bring software life cycle data up to
the level required.

Conclusion
GrammaTech static analysis tools can make a significant contribution to DO­
178B activities. Sophisticated analyses in both tools provide multiple points of
leverage for verification and reverification. In addition, CodeSonar’s extensive
reporting and record-keeping mechanisms provide support for various other DO­
178B objectives, as do the program understanding capabilities of CodeSurfer.

To learn more about CodeSonar and CodeSurfer, and for a free trial, contact
GrammaTech.

About GrammaTech
GrammaTech was founded by computer science professors Tom Reps of the University of
Wisconsin and Tim Teitelbaum of Cornell University. The staff includes thirteen Ph.D.­
level experts in static analysis. Leading organizations such as Lockheed Martin, Northrop
Grumman, BAE Systems, GE Aviation, LG Electronics, Samsung, Qualcomm, Panasonic,
Kawasaki, the FDA, and NASA use GrammaTech CodeSonar and CodeSurfer to improve
software quality and reduce costs.

14

References

 1. 	DO-178B, Software Considerations in Airborne Systems and Equipment

Certification. 1992, RTCA Inc.

 3. 	Halstead,M.H., Elements of Software Science. 1977, New York, NY: Elsevier. 142.

4. 	Holzmann,G.J., The Power of 10: Rules for Developing Safety-Critical Code. IEEE
Computer, 2006. 39(6): pp. 95-97.

5. 	 Pugh,W., FindBugs - Find Bugs in Java Programs, http://findbugs.sourceforge.net/.

6. 	 Watson,A.H. and McCabe,T.J., Structured Testing: A Testing Methodology Using
the Cyclomatic Complexity Metric. 1996, Computer Systems Laboratory, National
Institute of Standards and Technology, Gaithersburg, MD. NIST Special
Publication 500-235.

GrammaTech, Inc.
531 Esty Street
Ithaca, NY 14850
Tel: 607.273.7340 CodeSonar and CodeSurfer are registered trademarks of GrammaTech, Inc.
www.grammatech.com © 2010 GrammaTech, Inc. All rights reserved.

15

http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net
http://www.grammatech.com

